MTH5123 - Differential Equations - 2022/23
Topic outline
-
-
GENERAL ANNOUNCEMENTS
-
STUDENT FORUMThis forum is available for everyone to post messages to.
If you have any questions about the module, please ask them here.
Students are encouraged to post questions to this forum more than writing emails directly to the Professor.
The forum will be monitored Tuesday and Thursday after 5pm.
Students should feel free to reply to other students if they are able to. Group learning and peer discussion are very helpful for active learning of new knowledge.
-
Simple examples of ODEs solver with "Mathematica"software.
Mathematica, MATLAB, etc. are useful softwares to check the analytical solution of differential equations. There are free Mathematica licenses for students in QMUL, which you can require by contact QMUL IT following the QMUL Mathematica software webpage.
https://www.its.qmul.ac.uk/support/self-help/software/free-and-discounted-software/mathematica/
338.0 KB -
ONLINE COURSE ROOM
Please log in here for following online the next lecture or tutorial.
-
Final exam for associate students Quiz
This handwritten assessment is available for a period of 4 hours, within which you must submit your solutions. You may log out and in again during that time,but the countdown timer will not stop. If your attempt is still in progress at the end of your 4 hours, any file you have uploaded will be automatically submitted.
The assessment is intended to be completed within 2 hours.
In completing this assessment:
•You may use books and notes.
•You may use calculators and computers, but you must show your working for any calculations you do.
•You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
•You must not seek or obtain help from anyone else.
-
Late Summer reassessment 2022/23 Quiz
This handwritten assessment is available for a period of 4 hours, within which you must submit your solutions. You may log out and in again during that time, but the countdown timer will not stop. If your attempt is still in progress at the end of your 4 hours, any file you have uploaded will be automatically submitted.
The assessment is intended to be completed within 2 hours. In completing this assessment:
• You may use books and notes.
• You may use calculators and computers, but you must show your working for any calculations you do.
• You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
• You must not seek or obtain help from anyone else.
-
ENGAGEMENTEngagement with this module will be monitored in line with the School’s student engagement policy, in particular your coursework submissions will count toward your engagement with the module; please see https://test.qmplus.qmul.ac.uk/course/view.php?id=4360.ASSESSMENT CRITERIAAssessment and marking criteria: In 2022/2023, the assessment structure will be 2 courseworks (20% of the total mark ) and a final exam (80% of the total mark). For your final assessment, the marking criteria gives credit both for (clearly explained) method and final answer. You will know what do clearly explained methods mean through the lectures during the whole semester.
-
There may be times during the term when you get stuck doing your homework or project. This is normal.
Who to contact for what:
Should you find learning difficulties, post your question to the online forum.
The forum is monitored twice a week by the Module Lead, moreover you can discuss with the other students of the module about the module content.
Alternatively you can bring those questions to the tutorials.
Try to limit direct emails to the Module Lead at the minimum to allow the Module Lead to answer all emails in time
Module Lead: g.bianconi@qmul.ac.uk
-
WELCOME WEEK PREPARATORY TASKS
- Watch the introductory video (Slides)
- Answer the Revision questions of pre-request knowledge from previous modules, e.g. Calculus & Algebra
WEEK 1 SUBJECT
Introduction of Ordinary Differential Equation. Separable 1st-order ODEs. Reducible to separable 1st-order ODE (z=ax+by+c)
WEEK 1 ACTIVITIES
- Participate in the live lectures
- Read Week 1 of the typeset Lecture notes.
- Answer Formative Assessment 1 Practice and exploration questions
- Train with Mock Quiz Week 1
WEEK 1 LECTURESTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1: Introduction to Ordinary Differential Equations
- Lesson 2: Separable 1st-order Differential Equations
- Lesson 3: Reducible to seperable 1-st order ODE
- Tutorial 1 &2&3 : Covering the Preparatory questions (Solutions), Formative Assessment Week 1 practice and exploratory questions (Solutions) and Mock Quiz Week 1
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 &2: Recording (QReview), Slides, Handwritten notes
- Lesson 3: Recording (QReview), Handwritten notes
- Tutorial 1: Recording, Handwritten notes
-
WEEK 2 SUBJECT
Scale invariant 1st-order ODE (reducible to separable), homogenous 1st-order Linear ODE, inhomogenous 1st-order Linear ODE (Variation of parameter method), Exact 1st-order ODE
Most Exact 1st-order ODEs are non-linear as well, and they are in general not exact. In this module, we consider exclusively separable or exact ODEs.
WEEK 2 ACTIVITIES
- Participate in the live lectures
- Read Week 2 Lecture notes.
- Answer the Formative Assessment 2 Practice and exploration questions
- Train with Mock Quiz Week 2
WEEK 2 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1:Scale-invariant 1-st order ODE and Applications
- Lesson 2: Inhomogeneous 1-st order linear ODE
- Lesson 3: Exact 1-st order ODE
- Tutorial 1 &2&3: Covering Formative Assessment Week 2 Practice and exploration questions (Solutions) and Mock Quiz Week 2
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be available after the live lessons)
- Lesson 1,2 3: Recording (lesson 1-2 Q-review), Recording(lesson 3 Q-review) Handwritten notes
- Tutorial 1: Recording, Handwritten notes
- Participate in the live lectures
-
WEEK 3 SUBJECT
Initial Value Problem (I.V.P), Picard-Lindelöf Theorem (existence and uniqueness of the solutions of I.V.Ps of the 1st-order ODE).Transformation of a nth-order ODE to a system of 1-st order ODEs.WEEK 3 ACTIVITIES
- Participate in the live lectures
- Read Week 3 Lecture notes
- Answer the Formative Assessment Week 3 Practice and exploration questions
- Train with Mock Quiz Week 3
WEEK 3 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1: Initial Value Problem (I.V.P.) and motivational examples for the Picard-Lindelöf Theorem
- Lesson 2: Picard-Lindelöf Theorem
- Lesson 3: Transformation of a nth-order ODE to a system of 1-st order ODEs.
- Tutorial 1 &2&3: Covering Formative Assessment Week 3 Practice and exploration questions (Solutions) and Mock Quiz Week 3
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 &2: Recording (Q-Review), Handwritten notes Lesson 1 Lesson 2
- Lesson 3: Recording, Handwritten notes
- Tutorial 1: Recording (starting from minute 18), Handwritten notes
- Participate in the live lectures
-
WEEK 4 SUBJECT
Obtaining the general solutions to homogeneous 2nd-order linear ODEs (by characteristic equations), and solve I.V.P to 2nd-order linear ODEs.
WEEK 4 ACTIVITIES
- Participate in the live lectures
- Read Week 4 Lecture notes
- Answer the Formative Assessment Week 4 Practice and exploration questions
- Train with Mock Quiz Week 4
- Complete the Early Feedback Questionnaire
WEEK 4 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1: General introduction to 2nd order linear ODE
- Lesson 2: Solution of 2nd order linear ODEs with constant coefficients
- Lesson 3: Solution of 2nd order linear ODEs with constant coefficients and IVP
- Tutorial 1 &2&3: Covering Formative Assessment Week 4 Practice and exploration questions (Solutions) and Mock Quiz Week 4
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 &2 : Recording, Handwritten notes (Lesson 1) (Lesson2)
- Lesson 3: Recording, Handwritten notes
- Tutorial 1: Recording, Handwritten notes
- Participate in the live lectures
-
WEEK 5 SUBJECT
Euler type equations, variation of parameter method for inhomogenerous 2nd-order ODEs, educated guess methodWEEK 5 ACTIVITIES
- Participate in the live lectures
- Read Week 5 Lecture notes
- Answer the Formative Assessment Week 5 Practice and exploration questions
- Train with Mock Quiz Week 5
WEEK 5 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1:Euler type equations
- Lesson 2: Variation of parameter method for
inhomogenerous 2nd-order ODEs
- Lesson 3: Educated guess method
- Tutorial 1 &2&3: Covering Formative Assessment Week 5 Practice and exploration questions (Solutions) and Mock Quiz Week 5
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 &2 : Recording, Handwritten notes (Lesson 1) (Lesson 2)
- Lesson 3: Recording Handwritten notes
- Tutorial 1: Recording Handwritten notes
- Participate in the live lectures
-
WEEK 6 SUBJECT
Introduction to B.V.P. , Theorem of the Alternative (theorem of the existence and uniqueness of solutions of B.V.Ps)
WEEK 6 ACTIVITIES
- Participate in the live lectures
- Read Week 6 Lecture notes
- Answer the Formative Assessment Week 6 Practice and exploration questions
- Train with Mock Quiz Week 6
- Complete
Coursework 1 (Assessed Quiz) on the
material of week 1-6. The Coursework will be open starting from Thursday 3 November 2020 at 5pm. Please submit by Thursday 10 November 2022 at 5pm. This is a summative assessment (in the form of a QMPLUS quiz) that counts 10%
towards your module mark. All late submissions will be given 0 marks if the student does not have approved EC. You have only one attempt at the assessment. If your attempt at the quiz is still in
progress at the end of the allowed time, the answers you have filled in
so far will be automatically submitted. You should read the Important information about coursework and tutorials before attempting this assessment.
WEEK 6 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1:Introduction to Bounday Value Problems (B.V.P.)
- Lesson 2: Introduction to the Theorem of the Alternative
- Lesson 3: Theorem of the Alternative and its applications.
- Tutorial 1 &2: Covering Formative Assessment Week 6 Practice and exploration questions (Solutions) and Mock Quiz Week 6
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 &2: Recording, Handwritten notes (Lesson 1,Lesson 2)
- Lesson 3: Recording Handwritten notes
- Tutorial 1: Recording Handwritten notes
-
Please submit by Thursday 10 November 2022 at 5pm. This is a summative assessment (in the form of a QMPLUS quiz) that counts 10% towards your module mark. You have only one attempt at the assessment. All late submissions will be given 0 marks if the student does not have approved EC. If your attempt at the quiz is still in progress at the end of the allowed time, the answers you have filled in so far will be automatically submitted. You should read the Important information about coursework and tutorials before attempting this assessment.
Solutions will be available after the deadline.
-
118.6 KB
- Participate in the live lectures
-
-
Week 8 - Autonomous Systems, Dynamical Systems, Equilibria, Linearisation of systems of nonlinear ODEs
HighlightedWEEK 8 SUBJECT
Autonomous systems, Dynamical systems, Equilibria, Linearisation of systems of nonlinear ODEs.
WEEK 8 ACTIVITIES
- Participate in the live lectures
- Read Week 8 Lecture notes
- Answer the Formative Assessment Week 8 Practice and exploration questions
- Train with Mock Quiz Week 8
WEEK 8 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1:Autonomous Systems, Dynamical Systems, IVP of dynamical systems.
- Lesson 2: Trajectories, Equilibria
- Lesson 3: Linearization of a non-linear system of ODEs
- Tutorial 1 &2: Covering Formative Assessment Week 8 Practice and exploration questions (Solutions) Mock Quiz Week 8
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 &2: Recording, Handwritten notes
- Lesson 3: Recording Handwritten notes
- Tutorial 1: Recording Handwritten notes
- Participate in the live lectures
-
WEEK 9 SUBJECT
Solving linear ODE systems, Eigenvalues and Eigenvectors, Introduction to Phase Portraits
WEEK 9 ACTIVITIES
- Participate in the live lectures
- Read Week 9 Lecture notes
- Answer the Formative Assessment Week 9 Practice and exploration questions
- Train with Mock Quiz Week 9
WEEK 9 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1: Revision of Algebra, Eigenvalues and Eigenvectors
- Lesson 2: Solving a linear system of first order ODEs
- Lesson 3: Phase portraits:introduction and take home message
- Tutorial 1 &2: Covering Formative Assessment Week 9 Practice and exploration questions (Solutions) Mock Quiz Week 9
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1& 2: Handwritten notes (Lesson 1, Lesson 2)
- Lesson 3: Handwritten notes
- Tutorial 1:Handwritten notes
- Participate in the live lectures
-
WEEK 10 SUBJECT
Phase portrait of linearised systems. Case of real eigenvalues of the linearised system. Case of complex eigenvalues of the linearised system.
WEEK 10 ACTIVITIES
- Participate in the live lectures
- Read Week 10 Lecture notes
- Answer the Coursework 5 Week 10 Practice and exploration questions
- Train with Mock Quiz Week 10
WEEK 10 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1:Phase portraits: case of real and distinct eigenvalues (saddle, stable and unstable node)
- Lesson 2: More on phase portraits
- Lesson 3: Phase portraits: case of complex eigenvalues (stable and unstable focus, centre
- Tutorial 1 &2: Covering Coursework 5 Week 10 Practice and exploration questions (Solutions) Mock Quiz Week 10
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 & 2: Recording, Handwritten notes (Lesson 1, Lesson 2)
- Lesson 3: Recording Handwritten notes
- Tutorial 1: Recording Handwritten notes
- Participate in the live lectures
-
WEEK 11 SUBJECT
Summary of phase portraits for linearised systems. Lyapunov and asymptotic stability. Lyapunov function.
WEEK 11 ACTIVITIES
- Participate in the live lectures
- Read Week 11 Lecture notes
- Answer the Formative Assessment Week 11 Practice and exploration questions
- Train with Mock Quiz Week 11
- Complete Coursework 2 (Assessed Quiz) on the material of week 8-11. The Coursework will be open starting from Friday 9 December 2020 at 12pm. Please submit by Friaday 16 December 2022 at 12pm. This is a summative assessment (in the form of a QMPLUS quiz) that counts 10% towards your module mark. All late submissions will be given 0 marks if the student does not have approved EC. You have only one attempt at the assessment. If your attempt at the quiz is still in progress at the end of the allowed time, the answers you have filled in so far will be automatically submitted. You should read the Important information about coursework and tutorials before attempting this assessment.
WEEK 11 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1: Lypunov stability, and Asymptotic stability
- Lesson 2: Lypunov function
- Lesson 3: Further topics on stability
- Tutorial 1 &2: Covering Formative Assessment Week 11 Practice and exploration questions (Solutions) Mock Quiz Week 11
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 & 2: Recording, Handwritten notes (Lesson 1, Lesson 2)
- Lesson 3: Recording Handwritten notes
- Tutorial 1: Recording Handwritten notes
-
Please submit by Friday 16 December 2022 at 12pm. This is a summative assessment (in the form of a QMPLUS quiz) that counts 10% towards your module mark. You have only one attempt at the assessment. All late submissions will be given 0 marks if the student does not have approved EC. If your attempt at the quiz is still in progress at the end of the allowed time, the answers you have filled in so far will be automatically submitted. You should read the Important information about coursework and tutorials before attempting this assessment.
Solutions will be available after the deadline.
-
120.1 KB
- Participate in the live lectures
-
WEEK 12 SUBJECT
Revision of the course content. Lesson 3 and Tutorials are revision and question time, students can use the forum to ask questions and revision of some material they would like to see covered or they can either ask questions directly to the Professor during the interactive sessions.
WEEK 12 ACTIVITIES
- Participate in the live lectures
- Make an effort to go through all lecture contents and try to identify and discuss your learning difficulties with the Professor in interactive sessions.
- Complete Coursework 2 (Assessed Quiz ) on the material of week 8-11. Please submit by Friday 16 December 2022 at 12pm. This is a summative assessment (in the form of a QMPLUS quiz) that counts 10% towards your module mark. You have only one attempt at the assessment. If your attempt at the quiz is still in progress at the end of the allowed time, the answers you have filled in so far will be automatically submitted. You should read the Important information about coursework and tutorials before attempting this assessment.
WEEK 12 LECTURES AND TUTORIALSTo follow online the live lectures and tutorials login to the Online course room
- Lesson 1: Revision
- Lesson 2: Revision
- Lesson 3: Revision, Question time
- Tutorial 1 &2: Revision, Question time
LINKS TO RECORDINGS, HANDWRITTEN NOTES AND SLIDES (will be avaible after the live lessons)
- Lesson 1 and 2: Recording, Handwritten notes (Lesson 1, Lesson 2)
- Lesson 3: Recording, Handwritten notes
- Tutorial 1: Recording Handwritten notes
-
-
-
246.8 KB
-
160.5 KB
-
223.2 KB
-
183.4 KB
-
167.2 KB
-
175.0 KB
-
143.1 KB
-
240.8 KB
-
236.5 KB
-
190.2 KB
-
-
-
462.4 KB
-
573.9 KB
-
2.7 MB
-
2.8 MB
-
510.9 KB
-
314.4 KB
-
909.3 KB
-
1.0 MB
-
1.1 MB
-
836.0 KB
-
1.3 MB
-
1.5 MB
-
1.3 MB
-
534.6 KB
-
975.2 KB
-
1.5 MB
-
1.4 MB
-
939.0 KB
-
926.3 KB
-
1.4 MB
-
1.3 MB
-
581.6 KB
-
2.5 MB
-
1.4 MB
-
1.0 MB
-
1.1 MB
-
1.1 MB
-
1.3 MB
-
1.1 MB
-
1.2 MB
-
1.4 MB
-
1.2 MB
-
1.4 MB
-
1020.5 KB
-
1.2 MB
-
978.6 KB
-
789.0 KB
-
1.1 MB
-
989.3 KB
-
580.3 KB
-
-
-
109.0 KB
-
115.7 KB
-
118.5 KB
-
104.6 KB
-
106.2 KB
-
151.6 KB
-
107.5 KB
-
118.7 KB
-
98.6 KB
-
104.6 KB
-
-
-
-
114.6 KB
-
120.2 KB
-
126.1 KB
-
115.6 KB
-
85.6 KB
-
138.5 KB
-
135.3 KB
-
149.2 KB
-
146.3 KB
-
-
74.1 KB
-