TABLE OF CONTENTS

HEADER .. 1
ABSTRACT ... 1
PLAIN LANGUAGE SUMMARY 2
BACKGROUND ... 2
OBJECTIVES ... 3
METHODS ... 3
RESULTS .. 4
DISCUSSION .. 10
AUTHORS’ CONCLUSIONS 14
ACKNOWLEDGEMENTS ... 15
REFERENCES .. 15
CHARACTERISTICS OF STUDIES 32
DATA AND ANALYSES .. 43

Analysis 1.1. Comparison 1 Screening with mammography versus no screening, Outcome 1 Deaths ascribed to breast cancer, 7 years follow up. ... 46
Analysis 1.2. Comparison 1 Screening with mammography versus no screening, Outcome 2 Deaths ascribed to breast cancer, 13 years follow up. ... 48
Analysis 1.3. Comparison 1 Screening with mammography versus no screening, Outcome 3 Deaths ascribed to breast cancer, 7 years follow up, women below 50 years of age (Malmö 55). ... 49
Analysis 1.4. Comparison 1 Screening with mammography versus no screening, Outcome 4 Deaths ascribed to breast cancer, 7 years follow up, women at least 50 years of age (Malmö 55). ... 50
Analysis 1.5. Comparison 1 Screening with mammography versus no screening, Outcome 5 Deaths ascribed to breast cancer, 13 years follow up, women below 50 years of age. ... 51
Analysis 1.6. Comparison 1 Screening with mammography versus no screening, Outcome 6 Deaths ascribed to breast cancer, 13 years follow up, women at least 50 years of age. ... 52
Analysis 1.7. Comparison 1 Screening with mammography versus no screening, Outcome 7 Deaths ascribed to any cancer, all women. ... 53
Analysis 1.8. Comparison 1 Screening with mammography versus no screening, Outcome 8 Overall mortality, 7 years follow up. ... 54
Analysis 1.9. Comparison 1 Screening with mammography versus no screening, Outcome 9 Overall mortality, 13 years follow up. ... 55
Analysis 1.10. Comparison 1 Screening with mammography versus no screening, Outcome 10 Overall mortality, 7 years follow up, women below 50 years of age. ... 56
Analysis 1.11. Comparison 1 Screening with mammography versus no screening, Outcome 11 Overall mortality, 7 years follow up, women at least 50 years of age. ... 57
Analysis 1.12. Comparison 1 Screening with mammography versus no screening, Outcome 12 Overall mortality, 13 years follow up, women below 50 years of age. ... 58
Analysis 1.13. Comparison 1 Screening with mammography versus no screening, Outcome 13 Overall mortality, 13 years follow up, women at least 50 years of age. ... 59
Analysis 1.14. Comparison 1 Screening with mammography versus no screening, Outcome 14 Number of mastectomies and lumpectomies. ... 60
Analysis 1.15. Comparison 1 Screening with mammography versus no screening, Outcome 15 Number of mastectomies. ... 61
Analysis 1.16. Comparison 1 Screening with mammography versus no screening, Outcome 16 Number treated with radiotherapy. ... 62
Analysis 1.17. Comparison 1 Screening with mammography versus no screening, Outcome 17 Number treated with chemotherapy. ... 63
Analysis 1.18. Comparison 1 Screening with mammography versus no screening, Outcome 18 Number treated with hormone therapy. ... 64
Analysis 1.19. Comparison 1 Screening with mammography versus no screening, Outcome 19 Mortality among breast cancer patients in the Two-County study, 7 years follow up. ... 65
Analysis 1.20. Comparison 1 Screening with mammography versus no screening, Outcome 20 Results for biased trial. ... 66
Screening for breast cancer with mammography

Peter C Gøtzsche¹, Margrethe Nielsen¹

¹The Nordic Cochrane Centre, Rigshospitalet, Copenhagen, Denmark

Contact address: Peter C Gøtzsche, The Nordic Cochrane Centre, Rigshospitalet, Blegdamsvej 9, 3343, Copenhagen, DK-2100, Denmark. pcg@cochrane.dk.

Editorial group: Cochrane Breast Cancer Group.
Publication status and date: Edited (no change to conclusions), published in Issue 4, 2011.
Review content assessed as up-to-date: 20 November 2008.

Citation: Gøtzsche PC, Nielsen M. Screening for breast cancer with mammography. Cochrane Database of Systematic Reviews 2011, Issue 1. Art. No.: CD001877. DOI: 10.1002/14651858.CD001877.pub4.

ABSTRACT

Background

A variety of estimates of the benefits and harms of mammographic screening for breast cancer have been published and national policies vary.

Objectives

To assess the effect of screening for breast cancer with mammography on mortality and morbidity.

Search methods

We searched PubMed (November 2008).

Selection criteria

Randomised trials comparing mammographic screening with no mammographic screening.

Data collection and analysis

Both authors independently extracted data. Study authors were contacted for additional information.

Main results

Eight eligible trials were identified. We excluded a biased trial and included 600,000 women in the analyses. Three trials with adequate randomisation did not show a significant reduction in breast cancer mortality at 13 years (relative risk (RR) 0.90, 95% confidence interval (CI) 0.79 to 1.02); four trials with suboptimal randomisation showed a significant reduction in breast cancer mortality with an RR of 0.75 (95% CI 0.67 to 0.83). The RR for all seven trials combined was 0.81 (95% CI 0.74 to 0.87).

We found that breast cancer mortality was an unreliable outcome that was biased in favour of screening, mainly because of differential misclassification of cause of death. The trials with adequate randomisation did not find an effect of screening on cancer mortality, including breast cancer, after 10 years (RR 1.02, 95% CI 0.95 to 1.10) or on all-cause mortality after 13 years (RR 0.99, 95% CI 0.95 to 1.03).

Numbers of lumpectomies and mastectomies were significantly larger in the screened groups (RR 1.31, 95% CI 1.22 to 1.42) for the two adequately randomised trials that measured this outcome; the use of radiotherapy was similarly increased.
Authors’ conclusions

Screening is likely to reduce breast cancer mortality. As the effect was lowest in the adequately randomised trials, a reasonable estimate is a 15% reduction corresponding to an absolute risk reduction of 0.05%. Screening led to 30% overdiagnosis and overtreatment, or an absolute risk increase of 0.5%. This means that for every 2000 women invited for screening throughout 10 years, one will have her life prolonged and 10 healthy women, who would not have been diagnosed if there had not been screening, will be treated unnecessarily. Furthermore, more than 200 women will experience important psychological distress for many months because of false positive findings. It is thus not clear whether screening does more good than harm. To help ensure that the women are fully informed of both benefits and harms before they decide whether or not to attend screening, we have written an evidence-based leaflet for lay people that is available in several languages on www.cochrane.dk.

P L A I N L A N G U A G E S U M M A R Y

Screening for breast cancer with mammography

Screening with mammography uses X-ray to try to find breast cancer before a lump can be felt. The goal is to treat cancer early, when a cure is more likely. The review includes seven trials that involved 600,000 women who were randomly assigned to receive screening mammograms or not. The review found that screening for breast cancer likely reduces breast cancer mortality, but the magnitude of the effect is uncertain. Screening will also result in some women getting a cancer diagnosis even though their cancer would not have led to death or sickness. Currently, it is not possible to tell which women these are, and they are therefore likely to have breasts or lumps removed and to receive radiotherapy unnecessarily. The review estimated that screening leads to a reduction in breast cancer mortality of 15% and to 30% overdiagnosis and overtreatment. This means that for every 2000 women invited for screening throughout 10 years, one will have her life prolonged. In addition, 10 healthy women, who would not have been diagnosed if there had not been screening, will be diagnosed as breast cancer patients and will be treated unnecessarily. Furthermore, more than 200 women will experience important psychological distress for many months because of false positive findings.

It is thus not clear whether screening does more good than harm. Women invited to screening should be fully informed of both the benefits and harms. To help ensure that the requirements for informed consent for women contemplating whether or not to attend a screening program can be met, we have written an evidence-based leaflet for lay people that is available in several languages on www.cochrane.dk.

B A C K G R O U N D

Breast cancer is an important cause of death among women. Early detection through mass screening with mammography has the potential to reduce mortality, but it also leads to overdiagnosis and overtreatment (WHO 2002). Since screening preferentially identifies slow-growing tumours (length bias) (Final reports 1977; Fox 1979), the harms of unnecessary treatment could reduce or even neutralise any potential benefits.

The only way to reliably estimate the effectiveness of screening is with randomised trials. Large trials, involving 650,000 women, have been carried out in North America and Europe (Canada 1980; Edinburgh 1978; Göteborg 1982; Malmö 1976; New York 1963; Stockholm 1981; Two-County 1977; UK age trial 1991), and several systematic reviews and meta-analyses have been published (Berry 1998; Blamey 2000; Cox 1997; Demissie 1998; Elwood 1993; Glasziou 1992; Glasziou 1995; Glasziou 1997; Gotzsche 2000; Hendrick 1997; Humphrey 2002; Kerlikowske 1995; Kerlikowske 1997; Larsson 1996; Larsson 1997; Nyström 1993; Nyström 1996; Nyström 1997; Nyström 2000; Nyström 2002; Smart 1995; Swed Cancer Soc 1996; Wald 1993; WHO 2002).

The large number of reviews reflects the controversies surrounding mammography screening and the uncertainties of its effects in women of various ages. There is wide variation in screening policies between different countries, with some countries abstaining from introducing screening partly because of the lack of a documented reduction in all-cause mortality (Isacsson 1985; Skrabanek 1993; Swift 1993). One area of concern is the potential for radiotherapy treatment of low-risk women, such as those who have their cancers identified at screening, to increase all-cause mortality because of adverse cardiovascular effects (Early Breast C 1995; Early Breast.
C 2000). In addition, there is concern that cause of death has not been ascribed in an unbiased fashion in the trials. Finally, carcinoma in situ is much more likely to be detected with mammography and although less than half of the cases will progress to be invasive (Nielsen 1987) these women will nevertheless be treated with surgery, drugs and radiotherapy.

Meta-analyses of screening are often deficient (Walter 1999) and few of the meta-analyses listed above have taken account of the risk of bias in the individual trials or considered harms as well as benefits. We have identified important weaknesses in the trials (Gøtzsche 2000; Gøtzsche 2000a; Gøtzsche 2004; Olsen 2001; Olsen 2001a; Olsen 2001b) and have now updated our Cochrane Review with additional data.

OBJECTIVES

To study the effect of screening for breast cancer with mammography on mortality and morbidity.

METHODS

Criteria for considering studies for this review

Types of studies

Randomised clinical trials. Trials using less reliable randomisation methods were evaluated separately.

Types of participants

Women without previously diagnosed breast cancer.

Types of interventions

Experimental: screening with mammography
Control: no screening with mammography

Types of outcome measures

Mortality from breast cancer
Mortality from any cancer
All-cause mortality
Use of surgical interventions
Use of adjuvant therapy
Harms of mammography

Search methods for identification of studies

We used a very broad search strategy. We searched PubMed with (breast neoplasms[MeSH] OR "breast cancer" OR mammography[MeSH] OR mammograph*) AND (mass screening[MeSH] OR screen*). This search was supplemented with a search on author names in the author field (Alexander F*, Andersson I*, Baines C*, Bjurstam N*, Duffy S*, Fagerberg G*, Friisell J*, Miller AB, Moss S*, Nystrom L*, Shapiro S, Tabar L*). The latest search was done on 22 November 2008; more than 24,000 records were imported into ProCite and searched for author names, cities and eponyms for the trials.

We scanned reference lists and included letters, abstracts, grey literature and unpublished data to retrieve as much relevant information as possible. There were no language restrictions.

Data collection and analysis

Each author independently decided which trials to include based on the prestated criteria. Disagreements were resolved by discussion.

We assessed whether the randomisation was adequate and led to comparable groups, following standard criteria as closely as possible (Higgins 2008). We divided the trials into those with adequate randomisation and those with suboptimal randomisation. Both authors independently extracted methodological and outcome data; disagreements were resolved by discussion. Extracted data included: number of women randomised; randomisation and blinding procedures; exclusions after randomisation; type of mammography; number of screenings and interval between screenings; attendance rate; introduction of screening in the control group; co-interventions; number of cancers identified; breast cancer mortality; cancer mortality; all-cause mortality; harms of mammography; and use of surgical interventions, chemotherapy, radiotherapy, tamoxifen and other adjuvant therapy. We contacted the primary investigators to clarify uncertainties.

Statistical methods

We performed intention-to-treat analyses, when possible, by including all randomised women. A fixed-effect model with the Mantel-Haenszel method was used, and 95% confidence intervals (CI) are presented. In case of heterogeneity in the trial results (P < 0.10), we explored possible reasons. We present the analyses in the graphs as risk ratios, for convenience, but also discuss the absolute risk reductions (or increases) and risk differences as these are more important than relative risks for trials in low-risk populations with few events, such as in the trials we reviewed.

In the trials with suboptimal randomisation, we could not carry out a proper analysis for all-cause mortality as we did not have access to the necessary data (see ‘Risk of bias in included studies’) but present the data in the graphs for the sake of completeness. For breast cancer mortality, our estimates are not formally correct.
because we were unable to adjust for baseline differences. However, they turned out to be in close agreement with the estimates and CIs published by the trialists. For completeness, we have shown the pooled estimates for the trials with adequate randomisation and those with suboptimal randomisation together, although we believe these summary estimates are likely to be unreliable (see below).

We report outcome data at approximately 7 and 13 years, which were the most common follow-up periods in the trial reports; and present age groups under 50 years of age and above, which is the age limit that has most often been used by the trialists.

RESULTS

Description of studies

See: Characteristics of included studies; Characteristics of excluded studies.

We identified 11 trials. From these we excluded two small trials of several interventions including mammography (Berglund 2000; Dales 1979) and a trial involving 166,600 women where the only intervention was a prevalence screen and where exclusions after randomisation occurred only in the screened group; previous cancer at any site was an exclusion criterion and more than 1500 women were excluded from the screened group, 468 because they had already died (Singapore 1994).

Some of the eight eligible trials (Canada 1980; Edinburgh 1978; Göteborg 1982; Malmö 1976; New York 1963; Stockholm 1981; Two-County 1977; UK age trial 1991) comprised slightly different subtrials. The Two-County trial had different randomisation ratios in the two counties (Kopparberg 1977; Östergötland 1978); the Edinburgh and Malmö trials continued to include women as they passed the lower age limit for entry to the trial; and the Canadian trial was actually two trials, one covering the age group 40 to 49 years (Canada 1980a) and the other 50 to 59 years (Canada 1980b). Most trials covered the age range 45 to 64 years, but the UK age trial invited women aged 39 to 41 years to participate. The Canadian trial was the only one in which the women were individually randomised after invitation and gave informed consent; the others used a variety of procedures based on a prespecified segment of the female population that was randomised to invitation for screening or a control group.

By definition the intervention always included mammographic screening. The number of consecutive screening invitations was in the range of four to nine for all trials except the Two-County and Stockholm trials, in which a large fraction were invited for only two or three screenings. In the Two-County trial, the mammographically screened women were encouraged to perform breast self-examinations once a month on a fixed date (Rapport 1982).

This was Swedish policy generally but we do not know for certain whether this was also true for the Göteborg, Malmö and Stockholm trials. Clinical examinations of screened women were performed in New York and Edinburgh. In Canada, in the 40 to 49 year age group, screened women had an annual clinical breast examination whereas control women were examined at the first visit and were taught self-examination for use thereafter. In the 50 to 59 year age group, all women had their breasts clinically examined annually.

The women in the control group were not invited to screening at any point in time in the New York trial, whereas they were invited for screening after 10 to 13 years of follow up in the Edinburgh, Malmö and UK age trials. In the Canadian trial, most of the women in the control group were invited when the trial ended (Baines 2005). Some women were invited for screening while the trial was still ongoing in the Göteborg, Stockholm and Two-County trials (see 'Risk of bias in included studies'). In all trials, women in the control groups were offered usual care.

This included mammography on indication, that is for suspected malignancy; with the probable exceptions of the New York trial and the first five years of the Two-County trial.

According to the information we identified, the technical quality of the mammograms and the observer variation was assessed only in the Canadian trial. There are data on diagnostic rates, however, that show that the sensitivity in the trials that followed the New York trial has not consistently improved (Fletcher 1993; WHO 2002). Various combinations of one- and two-view mammography were used (see ‘Characteristics of included studies’).

Risk of bias in included studies

The trials have been conducted and reported over a long period of time, during which standards for reporting trials have improved. The New York trial, for example, was first reported in 1966 but crucial details on the randomisation method, exclusions and blinding were not published until 20 years later (Aron 1986; Shapiro 1985; Shapiro 1988). Data on use of radiotherapy and chemotherapy in the Kopparberg trial were published 14 years after the main results (Tabar 1999). Below we discuss the trial methodology in detail, which is essential reading to understand the controversies surrounding the effects of screening and the often conflicting information presented. The trials are described consecutively by start date.

The New York trial (New York 1963)

Population studied

The New York trial (also called the Health Insurance Plan (HIP) trial) invited women who were members of an insurance plan and aged 40 to 64 years from December 1963 to June 1966. It reported an individual randomisation within pairs matched by age, family size and employment group (Shapiro 1985). It is not clear whether the randomisation method was adequate; it was
described as “alternation” by researchers who contacted one of the trial investigators (Freedman 2004). The entry date for a woman was the date she was scheduled for the examination (Shapiro 1966); the matched control was assigned the same date (Shapiro 1985). The matched pairs method should lead to intervention and control groups of exactly the same size. This is supported by the approximate numbers given in several publications, for example “The women were carefully chosen as 31,000 matched pairs” (Strax 1973). The largest published exact number of women invited is 31,092 (Fink 1972).

Comparability of groups

Post-randomisation exclusions of women with previous breast cancer occurred but this status “was most completely ascertained for screened women”, whereas women in the control group “were identified through other sources as having had breast cancer diagnosed before their entry dates” (Shapiro 1988). Using information in the trial reports (Fink 1972; Shapiro 1985; Shapiro 1994), we calculated that 853 (31,092 minus 30,239) women were excluded from the screened group because of previous breast cancer compared with only 336 (31,092 minus 30,756) in the control group. Although it was reported that great care was taken to identify these women, the lead investigator noted that more than 20 years after the trial started some prior breast cancer cases among the controls were unknown to the investigators and those women should have been excluded (Shapiro 1985a). This creates a bias in favour of screening for all-cause mortality and likely also for breast cancer mortality though the authors have written, without providing data, that ascertainment of cases of previous breast cancer was “nearly perfect” in those women who died from breast cancer (Shapiro 1988).

It is difficult to evaluate whether there were other baseline differences between the groups. In one paper (Shapiro 1972) the text described all randomised women and referred to a table that showed baseline differences as percentages but did not provide the numbers upon which the percentages were based. Footnotes explained that some of the data were based on 10% and 20% samples. The table title referred to women entering the trial in 1964, and not all randomised women in Malmö. There were three different birth year groups, the first publications noted that 21,242 women were randomised to the screening group and 21,240 to the control group (Andersson 1980; Andersson 1981a). The first publications noted that 21,242 women were randomised to the screening group and 21,240 to the control group (Andersson 1980; Andersson 1981a).

Comparability of groups

A later publication reported four more women in the control group (Andersson 1983) but the main publication (Andersson 1988) reported only 21,088 women in the study group and 21,195 in the control group. It did not account for the 199 or 203 missing women. The number of missing women was largest in the 45 to 50 years age group (137 from the intervention group and 26 or 27 from the control group), mainly because the 1929 birth year cohort was recruited by an independent research project that included mammography (Andersson 2001). The trialists recruited less than the planned 50% of this birth year cohort, but this does not explain why 26 or 27 women were missing from the control group. Exclusion of the 1929 birth year cohort from analysis changes the relative risk for death from breast cancer by only 0.01 (Andersson 2001). For 17 of the 25 birth year cohorts, the size of the study and control groups were identical or differed by only one, as expected. The largest difference in the other eight cohorts, apart from the 1929 one, was 25 fewer women than expected in the study group for the 1921 cohort (Nyström 2002). Thus, the authors of a meta-analysis of the Swedish trials did not report on all randomised women in Malmö (Nyström 2002).

The date of entry into the trial was defined differently for the two groups. For the mammography group it was the date of invitation (Andersson 1988), and the midpoint of these dates for each birth year cohort defined the date of entry for women in the control group (Andersson 2000). Enrolment began in October 1976 (Andersson 2000) and ended in September 1978 (Andersson 1988). It is not clear whether screening of the control group began in December 1990 (Nyström 2000) or in October 1992 (Nyström 2002). Most women in the control group were never screened (Nyström 2002). We calculated the interval between screening started in the study group and in the control group (the intervention contrast) to be 19 years (Nyström 2002). In the meta-analyses of the Swedish trials, breast cancer cases diagnosed before randomisation were explicitly excluded, further reducing the screened group by 393 and the control group by 412 (Nyström 1993); in total 86 more women were excluded from the screened group than the control group. Baseline data on age were not significantly different in the screened group and the control group (Gøtzsche 2000a).

Assignment of cause of death

We found no data on the autopsy rate. Assignment of cause of death was unblinded for 72% of the women with breast cancer (Shapiro 1988). The differential exclusions and unblinded assessments make us question the reliability of the reported breast cancer mortality rates.

Likelihood of selection bias

We classified the trial as suboptimally randomised.

The Malmö trial (Malmö 1976)

Population studied

This trial recruited women aged 45 to 69 years. Randomisation was carried out by computer within each birth year cohort (Andersson 1981), dividing a randomly arranged list in the middle (Andersson 1999a). The first publications noted that 21,242 women were randomised to the screening group and 21,240 to the control group (Andersson 1980; Andersson 1981a).

Comparability of groups

A later publication reported four more women in the control group (Andersson 1983) but the main publication (Andersson 1988) reported only 21,088 women in the study group and 21,195 in the control group. It did not account for the 199 or 203 missing women. The number of missing women was largest in the 45 to 50 years age group (137 from the intervention group and 26 or 27 from the control group), mainly because the 1929 birth year cohort was recruited by an independent research project that included mammography (Andersson 2001). The trialists recruited less than the planned 50% of this birth year cohort, but this does not explain why 26 or 27 women were missing from the control group. Exclusion of the 1929 birth year cohort from analysis changes the relative risk for death from breast cancer by only 0.01 (Andersson 2001). For 17 of the 25 birth year cohorts, the size of the study and control groups were identical or differed by only one, as expected. The largest difference in the other eight cohorts, apart from the 1929 one, was 25 fewer women than expected in the study group for the 1921 cohort (Nyström 2002). Thus, the authors of a meta-analysis of the Swedish trials did not report on all randomised women in Malmö (Nyström 2002).

The date of entry into the trial was defined differently for the two groups. For the mammography group it was the date of invitation (Andersson 1988), and the midpoint of these dates for each birth year cohort defined the date of entry for women in the control group (Andersson 2000). Enrolment began in October 1976 (Andersson 2000) and ended in September 1978 (Andersson 1988). It is not clear whether screening of the control group began in December 1990 (Nyström 2000) or in October 1992 (Nyström 2002). Most women in the control group were never screened (Nyström 2002). We calculated the interval between screening started in the study group and in the control group (the intervention contrast) to be 19 years (Nyström 2002). In the meta-analyses of the Swedish trials, breast cancer cases diagnosed before randomisation were explicitly excluded, further reducing the screened group by 393 and the control group by 412 (Nyström 1993); in total 86 more women were excluded from the screened group than the control group. Baseline data on age were not significantly different in the screened group and the control group (Gøtzsche 2000a).

Assignment of cause of death

We found no data on the autopsy rate. Assignment of cause of death was unblinded for 72% of the women with breast cancer (Shapiro 1988). The differential exclusions and unblinded assessments make us question the reliability of the reported breast cancer mortality rates.

Likelihood of selection bias

We classified the trial as suboptimally randomised.

The Malmö trial (Malmö 1976)
This trial was neither included nor mentioned in the 1993 meta-
analysis of the Swedish trials (Nyström 1993). The lead investiga-
tor informed us that it was not conducted according to a formal
protocol (Andersson 1999b), whereas the most recent meta-
analysis reported that the trial was conducted with the same protocol
as the older part of the trial (Nyström 2002). When the breast
cancer mortality rate in the screening group is plotted against the
control group rate for eight trials, with data from younger women,
the Malmö II trial is a clear outlier (Berry 1998).

Assignment of cause of death

An official registry was used for cause-of-death assessments.

Likelihood of selection bias

We classified the trial as adequately randomised.

The Malmö II trial (Malmö II 1978)

Population studied

This was an extension of the Malmö trial, called MMST II.
Women who reached the age of 45 years were enrolled between
September 1978 and November 1990; screening of the control
group began in September 1991 (Nyström 2000). The long
enrolment period gives an average estimated intervention contrast of
eight years. Although the entry criterion for age was stated to be 45
years, the trialists included 6780 women aged 40 to 44 (Nyström
2002).

Comparability of groups

The MMST II trial has been published only in brief (Andersson
1997). We therefore cannot check whether there were differential
post-randomisation exclusions. If the same procedure as in the
Malmö trial had been followed, the sizes of the study and control
group cohorts should not differ by more than one. However, the
group size differed more for seven of the 13 birth year cohorts
(Nyström 2002). The reported numbers in the individual cohorts
do not add up to the reported totals, but to 28 fewer in the study
group and 28 more in the control group. Because of an admin-
istrative error, the entire 1934 birth year cohort was invited for
screening (Andersson 1999b). If this cohort is excluded, there is
still a gross imbalance with 5724 women in the study group and
only 5289 in the control group, for those aged 45 to 49 years (P
= 0.00004, Poisson analysis). In total, there were 9581 and 8212
women in the analyses, respectively (Nyström 2002).

This trial was neither included nor mentioned in the 1993 meta-
analysis of the Swedish trials (Nyström 1993). The lead investiga-
tor informed us that it was not conducted according to a formal
protocol (Andersson 1999b), whereas the most recent meta-
analysis reported that the trial was conducted with the same protocol
as the older part of the trial (Nyström 2002). When the breast
cancer mortality rate in the screening group is plotted against the
control group rate for eight trials, with data from younger women,
the Malmö II trial is a clear outlier (Berry 1998).

Assignment of cause of death

An official registry was used for cause-of-death assessments.

Likelihood of selection bias

We classified the trial as suboptimally randomised.

The Two-County trial (Kopparberg 1977; Two-County 1977;
Östergötland 1978)

Population studied

This trial recruited women 40 years of age and over in Koppar-
berg and Östergötland; the two subtrials were age-matched and
cluster randomised (21 and 24 clusters, respectively). The selec-
tion of clusters was stratified to ensure an even distribution be-
tween the two groups with respect to residency (urban or rural),
socioeconomic factors and size (Kopparberg 1977; Tabar 1979;
Östergötland 1978). The randomisation process and the defini-
tion of the date of entry have been inconsistently described; and
some women were only 38 years of age, below the inclusion cri-
criterion (Nyström 2002). According to the first publications, ran-
dom allocation of the women in each community block took place
three to four weeks before screening started (Fagerberg 1985); all
women from a given block entered the trial at the same time and
this date was the date of randomisation (Tabar 1985). However,
it has also been described that a public notary allocated the clus-
ters in Östergötland by tossing a coin (Nyström 2000) while wit-
nesses were present (Fagerberg, personal communication, 1999).
We have been unable to find any detailed description of the ran-
domisation in Kopparberg but found a recent description for the
whole trial: “Randomisation was by traditional mechanical meth-
ods and took place under the supervision of the trial statistician”
(Duffy 2003). Thus it is not clear whether the randomisation was
carried out on one occasion or whether it took place over several
years.

Women were invited to their first screening from October 1977
to January 1980 in Kopparberg (Tabar 1981). The cohorts in
Östergötland were defined between May 1978 and March 1981.
It is not clear how many women were randomised and reported
numbers vary considerably, both for numbers randomised (Table
1) and for numbers of breast cancer deaths, despite similar follow
up (Gøtzsche 2004). Documentation of baseline comparability
was called for in 1988 (Andersson 1988a) but it appears not to
have been published. Since the randomisation was stratified after
socioeconomic factors (Tabar 1991), baseline data potentially af-
fecting mortality should exist.

Comparability of groups

The randomisation procedure seems to have led to non-compara-
ble groups. First, breast cancer mortality in the control group was
almost twice as high in Kopparberg compared to Östergötland
(0.0021 versus 0.0012, P = 0.02). This was not apparent from
the tabulated data (Tabar 1985). The published graphs are also
potentially misleading; although adjacent mortality curves look
much the same the two y-axes are differently scaled (Tabar 1995).
Second, in Kopparberg more women in the control group were
diagnosed with breast cancer before entry to the trial than in the
study group. How the diagnostic information was obtained was
not described (Tabar 1989) and the number of women excluded
for this reason was not stated, but can be calculated by comparing
two tables (Tabar 1985; Tabar 1989). More women were excluded
from the control group than from the study group (P = 0.03);
most of the imbalance occurred in the age group 60 to 69 years
(P = 0.007). In Östergötland, numbers of exclusions were very
similar, 1.40% versus 1.39%. Third, age-matching was reported
(Tabar 1979; Tabar 1981; Tabar 1985a) but study group women
were on average five months older (Nixon 2000), which is a small
bias against screening.

We were unable to ascertain when systematic screening of the
control group started. The available information is conflicting and
the range of the discrepancies amounts to three years for both counties (Atterstam 1999; Duffy 2003; Nyström 1993, ; Nyström 2000; Nyström 2002; Rapport 1982; Tabar 1979; Tabar 1985; Tabar 1992). It seems most likely that screening of the control group in Kopparberg started in 1982, in accordance with the trial protocol (Rapport 1982) and a doctoral thesis (Nyström 2000). In this case, the impression conveyed in the main publication for the trial that screening was offered to the control group after publication of the results in April 1985 is incorrect (Tabar 1985; Tabar 1992). In the protocol, a five-year intervention period was planned but with a stopping rule based on statistical significance testing every six months (Rapport 1982). The trial publications did not mention the repeated looks at the data (Tabar 1985). We estimated an intervention contrast of five years for Kopparberg and eight years for Östergötland. A valid comparison of benefits and harms of screening should be confined to the period prior to screening of the control group.

No information is available from the primary author of this trial (Atterstam 1999; Prorok 2000; Tabar 2000a). We have not received information from Nyström either on the missing account of the randomisation process in Kopparberg, or from the Swedish National Board of Health (Socialstyrelsen) which funded the trial.

Assignment of cause of death

The autopsy rate was 36% (Projektgruppen 1985). According to an investigator involved with the trial (Crewdson 2002), other Swedish trialists (Nyström 2002), and a WHO report (WHO 2002), cause-of-death assessments were not blind. This has been disputed by the lead investigator of the trial (Tabar 2002). In a meta-analysis of the Swedish trials, a blinded independent endpoint committee reassessed the death classifications (Nyström 1993).

Likelihood of selection bias

We classified the trial as suboptimally randomised and likely to be biased.

The Edinburgh trial (Edinburgh 1978)

Population studied

This trial used cluster randomisation with about 87 clusters (the number varies in different reports); the age group was 45 to 64 years. Coded general practices were stratified by size and allocated by manual application of random numbers. In one district, at least three of the 15 practices initially randomised to the screening group later changed allocation status, and at least four others were added (Alexander 1989). Two of these practices were unintentionally told the wrong group, and three changed allocation group because of "statistical considerations” (Roberts 1984). One practice was included in the follow up even though it was a pilot screening practice that did not participate in the randomisation (Roberts 1990). The trialists have conducted replicate analyses with these women removed (Alexander 2000) but as far as we know the data have not been published.

Comparability of groups

Doubts about the randomisation process were raised by the trialists (Alexander 1989), supported by baseline differences: 26% of the women in the control group and 53% in the study group belonged to the highest socioeconomic level (Alexander 1994), and mammographic screening was associated with an unlikely 26% reduction in cardiovascular mortality (Alexander 1989). Entry dates were defined differently. In most practices the entry date was the date the invitation letter was issued; for women in hospital it was the date their names appeared on a list sent to their general practitioner. The entry date for five practices was not defined. In the control group, the entry date was the date the physician’s practice was indexed. Before entry, the general practitioners in the screening practices had to decide whether each woman would be suitable for invitation to screening. Physicians in the control practices decided whether each woman would be eligible to receive a leaflet about breast self-examination (Roberts 1984). The eligibility criteria were thus broader for the control group and the entry dates seem to be earlier. Practices were enrolled one at a time over a period of 2.5 years, from 1979 to 1981 (Alexander 1989). Women turning 45 years of age and women moving into the city were enrolled on an ongoing basis (Roberts 1984). Recruitment of the control group began in the 10th year of follow up (Alexander 1994). The exclusion procedures were different in the study and control groups (Chamberlain 1981; Roberts 1984) and 338 versus 177 women were excluded because of prior breast cancer (Alexander 1994).

The Canadian trial (Canada 1980; Canada 1980a; Canada 1980b)

Population studied

Women aged 40 to 59 years were individually randomised after invitation and giving informed consent. Their names were entered successively on allocation lists, where the intervention was pre-specified on each line. An independent review of ways in which the randomisation could have been subverted uncovered no evidence (Bailar 1997). Enrolment took place from January 1980 to March 1985 (Canada 1980a).

Comparability of groups

Fifty-nine women in the age group 40 to 49 years and 54 in the age group 50 to 59 years were excluded after randomisation (Miller 2000; Miller 2002); none were excluded because of previous breast cancer. The comparison groups were nearly identical in size (25,214 versus 25,216 aged 40 to 49 years; and 19,711 versus 19,694 aged 50 to 59 years), and were similar at baseline for age and nine other factors of potential prognostic importance (Baines 1994; Canada 1980; Canada 1980a; Canada 1980b; Miller 2000; Miller 2002). There were more small node-positive cancers at baseline in the screened group than in the control group among women aged 40 to 49 years, but this is a post-hoc subgroup finding which is probably a result of the intervention (Baines 1995;
Baines 1997; Canada 1980). Several women with positive nodes were probably unrecognised in the control group (Miller 1997a). This is supported by the fact that 47% of women with node-negative cancer in the usual care group died of breast cancer compared with 28% in the mammography group (Miller 1997). Exclusion of the deaths caused by these cancers did not change the result (Baines 1995; Baines 1997; Canada 1980).

Assignment of cause of death

The autopsy rate was low, 6% (Baines 2001). Cause-of-death assessments were blinded for women with diagnosed breast cancer and for other possible breast cancer deaths, for follow up after seven years. For follow up after 13 years, death certificates were used in a minority of cases as some hospitals refused to release clinical records (Miller 2000; Miller 2002).

Likelihood of selection bias

We classified the trial as adequately randomised.

The Stockholm trial (Stockholm 1981)

Population studied

In this trial, women were invited for screening if they were aged 40 to 64 years in 1981 (born 1917 to 1941) and were born on days 1 to 10 in a month, or if they were aged 40 to 64 years in 1982 (born 1918 to 1942) and were born on days 21 to 30 in a month (Frisell 1986). Similarly, there were two groups of controls but since they were all born on days 11 to 20 in a month, most women served as controls twice (those born in 1918 to 1941). Invitations were sent successively by ascending order of birth date (Frisell 1989). The date of entry was the date of invitation (Frisell 1991). Enrolment of the first cohort began in March 1981 and ended in April 1982; enrolment of the second cohort began in April 1982 and ended in May 1983 (Frisell 2000a).

Comparability of groups

Since the control women born in 1918 to 1941 served as controls for both subtrials (Frisell 1989a; Frisell 2000b) they should have two entry dates, approximately one year apart, but this was not described. According to the matching there should have been a similar number of women in the screened and control groups in each subtrial, but we found an imbalance in the second subtrial (P = 0.01, Poisson analysis) with 508 more women belonging to the screened group than to the control group (Frisell 1991). Furthermore, in the time period where 19,507 women born from 1918 to 1942 were invited to screening, only 929 women, all born in 1942, were included in the control group (Nyström 2002).

The reported numbers of women in the various subgroups are inconsistent, as are the numbers reported to us in personal communications (Frisell 2000a; Frisell 2000b). Because of the problems related to timing and the overlap of the two control groups, results from the two subtrials were not independent, and the estimates cannot be pooled without correction for dependence. It is not clear how these difficulties were handled in the trialists’ analysis (Frisell 1991) or in the Swedish meta-analyses (Nyström 1993; Nyström 2000; Nyström 2002).

The first trial report did not describe any women excluded after randomisation; only breast cancer cases identified during the intervention period were followed up to ascertain breast cancer deaths (Frisell 1991). Exclusions occurred in later publications but no numbers were given (Frisell 1997; Nyström 1993; Nyström 2000) and the numbers we have received in personal communications have been inconsistent (Frisell 2000a; Frisell 2000b).

Of those attending the first screening, 25% had had a mammogram in the two previous years (Frisell 1989a). Information on screening of the control group varied. A meta-analysis noted that a few women were screened after three years and most after four years (Nyström 1993), a doctoral thesis stated that the controls were invited for screening from October 1985 (Nyström 2000), and the trialists noted that they were invited during 1986 (Frisell 1989a; Frisell 1991). We estimated an intervention contrast of four years. A valid comparison of benefits and harms of screening should be restricted to this period (Frisell 1991).

Assignment of cause of death

It is not stated whether cause-of-death assessments were blinded for this initial period. The autopsy rate was 22% (Nyström 2000).

Likelihood of selection bias

We classified the trial as suboptimally randomised.

The Göteborg trial (Göteborg 1982)

Population studied

This trial included women aged 39 to 59 years. Birth year cohorts were randomised by the city municipality’s computer department with the ratio between study group and control group adjusted according to the capacity of the screening unit (Bjurstam 2000; Nyström 2002). The randomisation was by cluster based on date of birth in the 1923 to 1935 cohorts, and by individual birth date for the 1936 to 1944 cohorts (Bjurstam 1997).

Comparability of groups

We found baseline data only on age, and only for those aged 39 to 49 years. Since the allocation ratios were irregular, we could not assess the comparability of groups and adequacy of randomisation. The randomisation ratios were most extreme for the oldest and the youngest birth-year cohorts randomised in clusters; for 1923, there were 2.0 times as many women in the control group as in the study group, whereas for 1935 there were only 1.1 times as many. Since breast cancer mortality increases with age, this bias favoured screening and can be adjusted for only by comparing the results within each birth-year cohort before they are pooled (Bjurstam 2003).

Entry dates were not defined but the birth year cohorts were randomised one at a time, beginning with the 1923 cohort in December 1982 and ending in April 1984 with the 1944 cohort. A similar proportion of women were excluded from the study and control groups, 254 (1.2%) and 357 (1.2%), because of previous breast cancer (Bjurstam 2003). Information on screening of the control group varied, ranging from three to seven years after randomisation (Bjurstam 1997; Bjurstam 2003; Nyström 1993, figure; Nyström 2000). We estimated an intervention contrast of five years. A valid comparison of benefits and harms of screening...
should be confined to this period.

Assignment of cause of death
The autopsy rate was 31% (Nystöm 2000).
Likelihood of selection bias
We classified the trial as suboptimally randomised.

The UK age trial (UK age trial 1991)
Population studied
This trial included women aged 39 to 41 years who were randomised individually between 1991 and 1997 to an intervention group or a control group, in a ratio of 1:2. Women in the control group received no information about the trial. The trial was undertaken in 23 breast-screening units in England, Wales, and Scotland. Women were identified from lists of patients from general practitioners held on local Health Authority databases and randomisation was carried out stratified by practice. Prior to this, the general practitioners could remove women with previous breast cancer and others deemed inappropriate to invite for screening. From 1992 onwards the allocations were carried out on the Health Authority computer system with specifically written software. Before this, for women in three early centres, random numbers generated from the coordinating centre computer were applied to the lists.

Comparability of groups
We found baseline data only on age; the mean age was 40.38 and 40.39 years, respectively.
Thirty and 51 persons (0.05%) were excluded from analysis for similar reasons in the two groups. The intervention contrast was 10 years. A valid comparison of benefits and harms of screening should be confined to this period.

Assignment of cause of death
There was no information on autopsy rate; information on cause of death was obtained from the central register of the National Health Service.
Likelihood of selection bias
We classified the trial as adequately randomised.

Sources of data used for the meta-analyses

Effects of interventions
Eight trials provided data. We classified three trials as adequately randomised (Canada, Malmö and UK age trial) and four as suboptimally randomised (Göteborg, New York, Stockholm, Two-County) as was also the extension of the Malmö trial, MMST II. One trial (Edinburgh) was not adequately randomised and cannot provide reliable data; we have therefore only shown its results for completeness, in a separate graph. As the results from the UK age trial were obtained after a mean follow up of 10.7 years, we included them in the results both after 7 and after 13 years. The adequately randomised trials provided 40% of the breast cancer deaths after 13 years (Analysis 1.2).

Deaths ascribed to breast cancer
We judged assignment of breast cancer mortality to be unreliable and biased in favour of screening (see above and ‘Discussion’), but included this outcome because it was the main focus in all trials. The three adequately randomised trials did not find a statistically significant effect of screening on deaths ascribed to breast cancer, relative risk (RR) 0.93 (95% CI 0.79 to 1.09) after 7 years and RR 0.90 (95% CI 0.79 to 1.02) after 13 years. The four suboptimally randomised trials found an effect of screening (RR 0.71 (95% CI 0.61 to 0.83) after 7 years and RR 0.75 (95% CI 0.67 to 0.83) after 13 years. For all seven trials taken together the RR was 0.81 (95% CI 0.72 to 0.90) after 7 years and RR 0.81 (95% CI 0.74 to 0.87) after 13 years.

The adequately randomised trials did not find a statistically significant effect of screening on deaths ascribed to breast cancer in the youngest age group (under 50 years of age at randomisation except for 7 year data from Malmö for which the limit was 55 years); RR 0.94 (95% CI 0.78 to 1.14) after 7 years and RR 0.87 (95% CI 0.73 to 1.03) after 13 years. The suboptimally randomised trials found an RR of 0.81 (95% CI 0.63 to 1.05) after 7 years and RR of 0.81 (95% CI 0.68 to 0.98) after 13 years. For the oldest age group, the estimates for the adequately randomised trials were RR 0.88 (95% CI 0.64 to 1.20) and RR 0.94 (95% CI 0.77 to 1.15), respectively; for suboptimally randomised trials they were RR 0.67 (95% CI 0.56 to 0.81) and RR 0.70 (95% CI 0.62 to 0.80), respectively.

Deaths ascribed to any cancer
The adequately randomised trials did not find an effect of screening on deaths ascribed to any cancer, including breast cancer (RR 1.02, 95% CI 0.95 to 1.10); the follow up was 10.5 years for Canada and 9 years for Malmö (data were not available for the UK age trial). The suboptimally randomised trials did not provide
reliable estimates of cancer mortality (see above); the estimate for two suboptimally randomised trial that provided data (New York and Two-County trials) was RR 0.99 (95% CI 0.93 to 1.06).

All-cause mortality
All-cause mortality was not significantly reduced (RR 0.98, 95% CI 0.94 to 1.03 after 7 years; and RR 0.99, 95% CI 0.95 to 1.03 after 13 years) for the three adequately randomised trials. The suboptimally randomised trials did not provide reliable estimates of the effects on all-cause mortality (see ‘Risk of bias in included studies’ and ‘Discussion’) and the reported effects were heterogeneous (P = 0.03 after 7 years; P = 0.001 after 13 years). For completeness, the mortality estimates are shown in the graphs.

Surgery
Significantly more breast operations (mastectomies plus lumpectomies) were performed in the study groups than in the control groups: RR 1.31 (95% CI 1.22 to 1.42) for the two adequately randomised trials; RR 1.42 (95% CI 1.26 to 1.61) for the suboptimally randomised trials before systematic screening in the control group started (data were available only for Kopparberg and Stockholm). The increased surgery rate could not be explained by the excess of detected tumours at the first screen but seemed to persist, as the mean follow up was seven years for Canada and nine years for Malmö. For Stockholm, the reported data after five years had been transformed according to the smaller size of the control group (Frissell 1989a). We recomputed and found that also for this trial the excess of surgery persisted (RR 1.37 after first round; RR 1.48 after five years).

The number of mastectomies (excluding partial mastectomies, quadrantectomies and lumpectomies) was also significantly increased: RR 1.20 (95% CI 1.08 to 1.32) for the adequately randomised trials; RR 1.21 (95% CI 1.06 to 1.38) for the suboptimally randomised trials.

Radiotherapy
Significantly more women received radiotherapy in the study groups: RR 1.24 (95% CI 1.04 to 1.49) for Malmö after nine years; and RR 1.40 (95% CI 1.17 to 1.69) for Kopparberg before the control group screen.

Other adjuvant therapy
We found little information on other adjuvant therapy. It differed substantially for two of the Swedish trials even though they were carried out at the same time. Chemotherapy was given to only 7% of the breast cancer patients in Malmö but to 31% in Kopparberg before the control group was screened (Analysis 1.17). Conversely, hormone therapy was given to 17% in Malmö, and to 2% in Kopparberg (Analysis 1.18). Information exists from Kopparberg on therapeutic adjuvant therapy given over the years but has not been published (Tabar 1999).

Harms
We found no comparative data on psychological morbidity. Duration of sick leave and mobility of the shoulder were recorded in the Two-County trial (Rapport 1982) but have not been reported.

DISCUSSION

Breast cancer mortality

The main focus in the screening trials was breast cancer mortality, as very large trials are needed to assess the effect of screening on all-cause mortality. We cannot assume, however, that a beneficial effect on breast cancer mortality can be translated into improved overall survival. First, screening may increase mortality because of the increased use of radiotherapy. A meta-analysis predicted that overall, radiotherapy is beneficial for women at high risk of local recurrence. However, it is harmful for women at particularly low risk such as those who have their cancers found by screening. This is primarily because of damage to the vessels and development of heart failure resulting from at least some types of radiotherapy (Early Breast C 2000). It has been suggested by comparison of left- with right-sided irradiation that radiotherapy may double not only the mortality from heart disease but also from lung cancer (Darby 2005). This excess mortality is likely to be small, however, compared with the reduction in breast cancer mortality.

Second, assessment of cause of death is susceptible to bias. The authors of the Two-County trial assessed cause of death openly and reported a 24% reduction in breast cancer mortality for Östergötland (Tabar 2000), whereas a meta-analysis of the Swedish trials based on an official cause of death register reported only a 10% reduction for Östergötland (Nyström 2002). The trial authors reported 10 fewer deaths from breast cancer in the study group despite slightly longer follow up, and 23 more deaths in the control group. They have not provided a plausible explanation of this large discrepancy (Duffy 2002; Tabar 2002).

This bias also seems to favour screening when cause of death is determined blindly. In the New York trial, differential misclassification might be responsible for about half of the reported breast cancer mortality benefit. A similar number of dubious cases were selected for blinded review from each group, but a much smaller proportion of the screened group were finally classified as having died from breast cancer (Gotzsche 2004). Furthermore, although the mammographic equipment was standard at the time, its performance was poor. Only 15% of 299 cancers in the study group were detected solely by mammography, and mammography did not identify a single case of minimal breast cancer (< 1 cm) (Thomas 1977). The New York trial reported a 35% reduction in breast cancer mortality after seven years, but we consider it unlikely that it was a true effect.

In conjunction with the first meta-analysis of the Swedish trials, causes of death were reclassified blindly in some patients (Nyström 1993). Breast cancer was considered the underlying cause of death in 419 of the screened group and 409 of the control group according to Statistics Sweden, and in 418 and 425 cases according to the committee (Nyström 1993). The fact that all 17 reclassifications favoured the screened group supports differential misclassification. This bias is difficult to avoid (Gotzsche 2001).
cancers are treated by lumpectomy and radiotherapy, and radiotherapy reduces the rates of local recurrence by about two-thirds (Early Breast C 2000). This might increase the likelihood that deaths among screen-detected breast cancer cases will be misclassified as deaths from other causes (Early Breast C 1995) and that too many deaths in the control group will be misclassified as breast cancer deaths. In fact, for the Swedish trials it was stated that “most patients with locally advanced disease will die due to cancer” and that breast cancer as the underlying cause of death includes women with locally advanced breast cancer, whereas women who have been treated successfully should not be classified as having breast cancer deaths if another specified disease could be the cause of death (Nyström 2000). The use of an official cause of death register as in more recent meta-analyses (Nyström 2002) cannot solve these problems.

Postrandomisation exclusion of women who already had breast cancer at the time of entry to the trial is another possible source of bias. The exclusions were sometimes made many years after the trial started, or even after it had ended. In the Two-County trial, only women who were considered to have died from breast cancer were excluded (Nixon 2000), a highly bias-prone process because those assuming cause of death were not blinded for screening status. Furthermore, the process seemed not to have been adequately monitored as it was not possible to identify prior breast cancers in Östergötland, by cluster (Nixon 2000). It should therefore not be possible to do analyses that respect the clustering with those women excluded, although such analyses have been reported (Tabar 1989; Tabar 1990; Tabar 1991; Tabar 1995). A study that used the same registers as those used by the trialists found that a large number of breast cancer cases and deaths seemed to be missing in reports on the Two-County trial (Zahl 2006). Another study found that the large reduction in breast cancer mortality agreed poorly with the cancer stages that were reported for the trial (Zahl 2001).

The largest effects on breast cancer mortality were reported in trials that had long intervals between screenings (Two-County trial), invited a large fraction of the women to only two or three screenings (Two-County and Stockholm trials), started systematic screening of the control group after three to five years (Two-County, Göteborg and Stockholm trials) and that had poor equipment for mammography (New York trial); and the cancers found with mammography were considerably smaller in the Canadian trial than in the Two-County trial (Narod 1997). This suggests that differences in reported effects are related to the risk of bias in the trials rather than to the quality of the mammograms or the screening programs. The sensitivity of mammographic readings in the trials that followed the New York trial has not consistently improved (Fletcher 1993; WHO 2002) and meta-analyses have failed to find an association between mammographic quality and breast cancer mortality (Glaziou 1995; Kerlikowske 1995).

Several of the trials had clinical examination or self-examination of the breasts as part of their design (see ‘Description of studies’) but this is not likely to have had a major influence on the effect estimates. The effect of clinical examination is uncertain, and large randomised trials did not find an effect of self-examination (Kösters 2003).

Cancer mortality

The major difficulty in assessing cause of death in the trials might have occurred when the patients were diagnosed with more than one malignant disease (Miller 2001). The importance of autopsy is illustrated by the fact that 21% of the women with breast cancer who died in the Malmö trial had two or three types of different cancers (Andersson 1988a; Janzon 1991). Patients with cachexia and no signs of recurrence of breast cancer would likely be assigned to another type of cancer.

Since cancer mortality is likely to be less subject to bias than breast cancer mortality, we calculated what the expected cancer mortality (including breast cancer mortality) would be if the reported reduction in breast cancer mortality of 29% after seven years for the suboptimally randomised trials (Analysis 1.1) were true. Weighting the four trials that provided data on number of cancer deaths (Analysis 1.7), the expected relative risk was 0.95. However, all-cancer mortality in these trials was not reduced (RR 1.00, 95% CI 0.96 to 1.05), and this estimate was significantly higher than what was expected (P = 0.02). This provides further evidence that assessment of cause of death was biased in favour of screening. Data from the Two-County trial (Tabar 1988) illustrates the misclassification directly (Analysis 1.19) (Gotzsche 2004). Among women with a diagnosis of breast cancer, mortality for other cancers was significantly higher in the screened group and mortality from all other causes also tended to be higher. The increase in mortality for causes other than breast cancer amounts to 38% of the reported decrease in breast cancer mortality in the Kopparberg part of the trial and 56% in the Östergötland part.

It has been shown that belief in the effectiveness of an intervention may influence the decision on which type of cancer caused the patient’s death (Newschaffer 2000). Also, lethal complications of cancer treatments are often ascribed to other causes. The size of this misclassification is 37% for cancer generally and 9% for breast cancer (Brown 1993).

All-cause mortality

The trials were not powered to detect an effect on all-cause mortality, but it is an important outcome since breast cancer mortality is biased. The complex designs and insufficient reporting precluded us from providing reliable estimates for all-cause mortality in the trials with suboptimal randomisation. Furthermore, these trials had introduced early screening of the control group or had differentially excluded women after randomisation. Incidentally, however, all-cause mortality after 13 years was the same in adequately randomised trials and in suboptimally randomised trials.
In 2000, the estimate reported for the four Swedish trials was RR 1.00 (95% CI 0.98 to 1.02) after adjustment for imbalances in age (Nyström 2000). In 2002, the authors reported a 2% (non-significant) reduction in all-cause mortality (RR 0.98, 95% CI 0.96 to 1.00) and stated that they would have expected a 2.3% reduction (Nyström 2002). However, the calculation was incorrect and the expected reduction, given their results, was only 0.9% (Gøtzsche 2002a). The error has been acknowledged (The Lancet Erratum 2002; Nyström 2002a) but the published response to our criticism was also incorrect (Nyström 2002b). The reported decrease of 2% in total mortality corresponds to a 10% decrease in all-cancer mortality, which is not plausible (see ‘Cancer mortality’ above).

The Östergötland part of the Two-County trial contributed about half of the deaths in the 2002 report and had a relative risk for all-cause mortality of 0.98. The women were randomised to only 24 clusters. In the Edinburgh trial there were 87 clusters, but double as many in the invited group belonged to the highest socioeconomic level compared to the control group (Alexander 1994). Socioeconomic factors are strong mortality predictors and could explain a 2% reduction in all-cause mortality, but such data remain unpublished and are also unavailable for the other Swedish trials. It has been reported that pretrial breast cancer incidence and breast cancer mortality were similar in the invited for screening and control groups in Östergötland (Nyström 2002), but the power of the test was very low (Gøtzsche 2002a). In contrast, another report found that breast cancer mortality was 15% lower in the invited groups in the Two-Country trial and that correction for this difference changed the estimate of the effect from a 31% reduction to a 27% reduction in breast cancer mortality (Duffy 2003).

It is not clear why the unadjusted and age-adjusted estimates for all-cause mortality were the same with an RR of 0.98. The 2002 Swedish meta-analysis comprised 43,343 deaths whereas in the 2000 meta-analysis of 27,582 deaths the estimates were RR 1.06 (95% CI 1.04 to 1.08) (Gøtzsche 2000) and RR of 1.00 (95% CI 0.98 to 1.02) (Nyström 2000), with non-overlapping confidence intervals. The Kopparberg part of the Two-County trial was not available for the 2002 meta-analysis, but this should not have made any difference since the RR for Kopparberg was 1.00 (95% CI 0.96 to 1.04) (Nyström 2000). The only other difference is that the extended data for the Malmö trial (MSST II) were included, but this trial contributed only 702 deaths (1.6%).

All-cause mortality has been reported to be lower in the Two-County trial when the analysis was confined to women with breast cancer (Tabar 2002a). Such subgroup analyses are very unreliable, as are similar analyses in historically controlled studies (Tabar 2001; Tabar 2003a), since many breast cancer cases in the screened groups will have an excellent prognosis because of overdiagnosis and length bias (Berry 2002).

Overdiagnosis and overtreatment

Overdiagnosis is an inevitable consequence of cancer screening and an obvious source of harm (WHO 2002). Screening primarily identifies slow-growing cancers and cell changes that are biologically benign (Doll 1981; Ernst 1996; Fox 1979). Survival of women with screen-detected cancers is therefore very high, for example 97% in Malmö after 10 years (Janzon 1991). Even within the same stage, it is higher than for cancers detected clinically (Moody-Ayers 2000).

The level of overdiagnosis and overtreatment was about 30% in the trials that did not introduce early screening in the control group, and somewhat larger in the suboptimally randomised trials before the control group screen. This is apart from the New York trial, which is unreliable since far more breast cancer cases were excluded from the screened group than from the control group (Shapiro 1977; Shapiro 1982; Shapiro 1989).

Large observational studies support these findings. Incidence increases of 40% to 60% have been reported for Australia, Finland, Norway, Sweden, UK and USA (Barratt 2005; Dueck 2003; Fletcher 2003; Gøtzsche 2004; Jonsson 2005; Ries 2002; WHO 2002; Zahl 2004). A small study from Copenhagen claimed that it is possible to screen without overdiagnosis, but it showed the expected prevalence peak, had very little power and provided no statistical analyses in support of the claim (Olsen 2003). Another small study from Florence claimed that only 5% of cases were overdiagnosed (Paci 2004).

A recent systematic review that adjusted for decreases in incidence, if any, in older age groups no longer found an overdiagnosis of 35% for invasive cancer and 52% when carcinoma in situ was included, in countries with organised screening programmes (Jorgensen 2009).

Screening increased the number of mastectomies by 20%. Since screening advances the time of diagnosis, a policy change towards more lumpectomies could have led to an overestimate. However, the policy change has occurred slowly (Nattinger 2000) and even in the period 1993 to 1995, 52% of breast surgery in California was mastectomy (Malin 2002). In Stockholm, the increase in mastectomies was larger after five years of screening (25%) than after the first round (16%), and when screening was introduced in Southeast Netherlands, the rate of breast-conserving surgery increased by 71% while the rate of mastectomy increased by 84% (Gøtzsche 2002) despite the fact that this study did not include carcinoma in situ. The percentage of cases of carcinoma in situ treated by mastectomy declined from 71% in 1983 to 40% in 1993 in USA, but the estimated total numbers of mastectomies for this condition increased almost three-fold (Ernster 1997). In
the UK, mastectomies increased by 36% for invasive cancer and by 42% for carcinoma in situ from 1990 to 2001 (Douek 2003).

Conversely, opportunistic screening in the control group would lead to an underestimate of overdiagnosis. In the trials from Malmö and Canada about 25% of the women in the control group reported having received a mammogram during the trial (Baines 1994; Andersson 1988).

The documented increase in mastectomies contrasts with assertions by trialists (Tabar 1989), policy makers (Statusrapport 1997; Swed Cancer Soc 1996; Westerholm 1988), websites supported by governmental institutions and advocacy groups (Jørgensen 2004), and invitational letters sent to women invited to screening (Jørgensen 2006; Gotzsche 2009) that early detection spares patients more aggressive treatments, in particular mastectomy. Publications that base their claims on numbers that include the control group screen (Tabar 2003) are also misleading, as are presentations of relative numbers rather than absolute numbers (Statusrapport 1997).

The proportion of breast preserving operations is said to be increasing, but the trend for the number of mastectomies is not revealed. A small study from Florence, without a control group (Paci 2002), was also unreliable (Gotzsche 2002b).

Quality assurance programs could possibly reduce the surgical activity to some degree, but they could also increase it. In the UK, for example, the surgeons were blamed for not having treated even more women with carcinoma in situ by mastectomy (BASO audit 2000).

False-positive diagnoses, psychological distress and pain

False-positive diagnoses can cause considerable and sustained psychological distress (Brewer 2007; Bulow 2000), not only until it is known whether or not there is a cancer (Brodersen 2006) but sometimes continuing after the women are declared free from cancer (Brodersen 2007). Many women experience anxiety, worry, despondency, sleeping problems, negative impact on sexuality and behaviour, and changes in their relationships with family, friends, and acquaintances as well as in existential values (Brodersen 2006; Brodersen 2007). This can go on for months, and some women will feel more vulnerable about disease and see a doctor more often (Barton 2001).

In the Stockholm trial, one-third of women with false-positive findings were not declared cancer-free at six months (Lidbrink 1996). In the UK, women who had been declared cancer-free after additional testing or biopsies were twice as likely to suffer psychological consequences three years later than women who received a clear result after their last mammogram (Brett 2001). In the USA, three months after they had false-positive results 47% of women who had highly suspicious readings reported that they had substantial anxiety related to the mammogram, 41% had worries about breast cancer, 26% reported that the worry affected their daily mood, and 17% that it affected their daily function (compared to 3% with a normal mammogram) (Lerman 1991). In Norway, 18 months after screening mammography 29% of women with false-positive results and 13% of women with negative results reported anxiety about breast cancer (Gram 1990).

In the USA, the estimated cumulative risk of a false-positive result after 10 mammograms was 49%, and 19% would have had a biopsy (Elmore 1998). The percentage of false-positive screening mammograms increased from 4% to 8% in a seven-year period (Elmore 1998), and more recently the recall rate in women aged 50 to 54 years was as high as 13% to 14% after the first mammogram, compared to 8% in the UK (Smith-Bindman 2003). In Norway, 21% will have experienced a false alarm after 10 mammograms (Hofvind 2004). However, such percentages are often too low because recalls due to poor technical quality of the mammogram were not included (Hofvind 2004). As the women are just as affected by such recalls as by a real suspicion of cancer (Brodersen 2006) they should be counted as false alarms.

Thus, it seems that screening inflicts important psychological distress for many months on more than a 10th of the healthy population of women who attend a screening program. The women are not being informed about this risk (Gotzsche 2009; Jørgensen 2004; Slaytor 1998; Werkö 1995) or the risk of receiving a diagnosis of carcinoma in situ (Gotzsche 2009; Jørgensen 2004; Thornton 1997).

About half of the women report that it is painful to have a mammogram taken (Armstrong 2007; Miller 2002a; McNee 1996), and half of the women who decline an invitation to the second round of screening note that the major reason was that their first mammogram was painful (Elwood 1998).

Other recent reviews of screening

Previous reviews have generally not heeded the methodological quality of the trials, but when the methods were assessed blindly the researchers judged the Canadian trial to be of high quality and the Two-County trial to be of poor quality (Glasziou 1995).

Only one of the recent reviews, commissioned by the US Preventive Services Task Force, has been systematic (Humphrey 2002). It excluded the Edinburgh trial and reported an RR of 0.84 (95% CI 0.77 to 0.91) for breast cancer mortality. The authors noted that “the mortality benefit of mammography screening is small enough that biases in the trials could erase or create it” and were concerned whether, across all age groups, the magnitude of benefit is sufficient to outweigh the harms. The Task Force gave mammography screening a grade B recommendation (US Task Force 2002).

A comprehensive WHO report (WHO 2002) was not a systematic review and paid little attention to the varying quality of the trials; it even included a non-randomised study in its meta-analysis. A global summit on mammography screening in Milan in 2002 did
not involve a systematic review either and had the character of a consensus conference (Boyle 2003).

The meta-analyses of the Swedish trials are not systematic reviews as they do not include all relevant trials. There are many possibilities for bias in cluster randomised trials (Puffer 2003) and numbers of randomised women were inconsistently reported (Table 1). In Stockholm, for example, the number of randomised women decreased by 4.5% in the screening group but increased by 3.6% in the control group (Gøtzsche 2000) in the Swedish 1993 review (Nyström 1993) compared to the trial report (Frisell 1997). In the 2000 and 2002 reviews (Nyström 2000; Nyström 2002), numbers have increased by 1.6% in both groups but should have been the same as in the 1993 report since all women were identified through their unique identification number (Nyström 2002), which has been used in Sweden for more than three decades; exclusions of women with previous breast cancer was completed with the 1993 review; and all three reviews were based on the exact age at randomisation, and the age range was the same. The varying numbers therefore indicate that the randomisation was not respected. The estimates in the Swedish reviews were adjusted for differences in age, but since the distribution of age would be expected to differ over socioeconomic strata such adjustment would be expected to lead to other imbalances (Gøtzsche 2000). Furthermore, simulation studies have shown that adjustments quite often increase bias rather than reduce it (Deeks 2003). The most recent review of the Swedish trials reported an RR of 0.85 (95% CI 0.77 to 0.94) with the follow-up model (Nyström 2002); another estimate giving an RR of 0.79 (95% CI 0.70 to 0.89) was based on an ‘evaluation model’, which was flawed (Berry 1998).

What is the bottom line on screening?

The decision to embark on the UK screening program was made mainly because of the positive results in the New York and Two-County trials (UK age trial 1991). Policy makers and many scientists believed that the benefit of screening was well documented. However, information essential to judging the reliability of the trials was often unpublished or published only in Swedish, in theses, letters, conference reports, reviews, or in journals that are not widely read and with titles and abstracts that did not indicate that important data were described. Furthermore, the harms of screening received very little attention.

The largest reported effect in the Swedish trials is a 29% relative reduction in breast cancer mortality for women aged 50 to 69 years, which corresponds to an absolute reduction in breast cancer mortality of 0.1% after 10 years (Nyström 1993). This benefit corresponds to a life extension of two days, on average, per woman who is invited for screening. This is described as two days per woman per screen in the WHO report (WHO 2002) but it is not per screen but per 10 years of screening (Nyström 1999). We have given reasons that make us believe that a realistic estimate of the effect is a 15% relative reduction in breast cancer mortality.

This agrees with the systematic review done for the US Preventive Services Task Force that suggested 16% (Humphrey 2002), and with the most recently updated meta-analysis of the Swedish trials that reported 15% with the follow-up model (Nyström 2002). Since all-cause mortality was about 10% during 10 years (Nyström 1996), survival after 10 years is 90.30% if women are invited to screening and 90.25% if they are not invited.

The trials did not find a reduction in all-cancer mortality. Our estimate could therefore be an overestimate but, if we assume the effect is 15%, it means that for every 2000 women invited for screening throughout 10 years, one will have her life prolonged. This number can be deduced from the first meta-analysis of the Swedish trials, taking into account that the effect is only half as large as indicated in that paper (Nyström 1993, page 976). It can also be deduced from our review, for example after seven years (Analysis 1.1) there were 384 deaths from breast cancer in the adequately randomised trials out of 173,061 women in the control group; a 15% effect corresponds to 326.4 deaths in a study group of the same size, which gives 0.7 women per 2000. Similarly, if we assume that the level of overdiagnosis is 30%, which might be an underestimate, it means that for every 2000 women invited for screening throughout 10 years 10 healthy women who would not have had a breast cancer diagnosis if there had not been screening will be diagnosed as cancer patients, and will be treated unnecessarily (see Analysis 1.14; there were 1083 cancers in the control group in the adequately randomised trials out of 66,154 women, which gives 325 overdiagnosed cancers, or 9.8 per 2000). In addition, it is likely that more than 200 women will experience important psychological distress for many months because of false-positive findings.

The balance between good and harm from screening is thus not clear. From the estimated benefit of an average life extension of one day, one should subtract the time it takes for the woman to travel and attend the screening sessions and the time used by staff members and other people, for example her general practitioner. In addition, the harmful effects of screening need to be considered, and there is loss of income and other costs. The National Health Service in the UK has never invested more in implementing a new type of clinical practice (Gray 1989).

It has been suggested that resources be redirected to interventions with proven benefit in breast cancer (Baum 2000) or used for other purposes (NBCC 2002). For comparison, the benefit is 200 times greater when women with node-positive breast cancer are treated with tamoxifen since the average life extension is six months after 10 years (Early Breast C 1998).

Authors’ Conclusions

Screening for breast cancer with mammography (Review)

Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Implications for practice

Despite the shortcomings of the trials, screening appears to lower breast cancer mortality. However, the chance that a woman will benefit from attending screening is very small, and considerably smaller than the risk that she may experience harm. It is thus not clear whether screening does more good than harm. Women, clinicians and policy makers should consider the trade-offs carefully when they decide whether or not to attend or support screening programs.

Screening advocates and their organisations have generally emphasised the benefits and omitted information on the major harms in their information materials (Dixon-Woods 2001; Jørgensen 2004; NHS leaflet 2001; US Task Force 2002) and in invitational letters (Jørgensen 2006; Gøtzsche 2009). Most women therefore tend to substantially exaggerate the benefits and to be unaware of the major harms of screening (Barratt 1997; Barratt 1999; Domenighetti 2003; Schwartz 2004). To help ensure that the requirements for informed consent for women contemplating whether or not to attend a screening program can be met, we have written an evidence-based leaflet for lay people (Gøtzsche 2009). The leaflet has been carefully tested among general practitioners and lay people. It is available on the BMJ website in English (Gøtzsche 2009) and in several languages, including English, on the website of The Nordic Cochrane Centre at www.cochrane.dk.

Implications for research

Breast cancer mortality is an unreliable outcome measure in screening trials (and therefore also in cohort studies of the effectiveness of national programs) and exaggerates the benefit. Because of the problems with the quality of the screening trials and the reported analyses, it would be useful if independent researchers performed an individual patient data meta-analysis, where exclusions of randomised women were not allowed. It would also be useful to obtain data on all-cancer mortality for all the trials since misclassification of cause of death often concerns deaths from other cancers. Finally, to improve the efficiency of screening programs and to reduce overdiagnosis and overtreatment, research is needed to identify means of separating cancers likely to result in death from the many benign cancers identified by screening that do not need treatment.

A C K N O W L E D G E M E N T S

We thank Freda Alexander, Ingvard Andersson, Cornelia Baines, Niels Bjurstam, Gunnar Fagerberg, Jan Frisell, Anthony B Miller and Sam Shapiro for comments on their trials, Friederike M Perl for pointing out an inconsistency in one of the trials, Mike Clarke for advice, Ole Olsen who was an author on the 2001 version of this review and wrote the draft section on methodological quality of the trials for that version, and Kay Dickersin for comments on the 2006 update of the review.

References to studies included in this review

Canada 1980 [published and unpublished data]

Baines CJ. Personal communication 18 Jan 2001.

Baines CJ. NBSS: changes were made, suspicious changes were not [letter]. CMAJ 1997;157(3):248–50.

Baines CJ, Miller AB. Mammography versus clinical examination of the breasts. Journal of the National Cancer
Canada 1980a (published and unpublished data)

Canada 1980b (published and unpublished data)

Edinburgh 1978 (published data only)

Alexander FE, Roberts MM, Huggins A, Muir BB. Use of

Göteborg 1982 *(published data only)*

Göteborg 1982a *(published data only)*

Göteborg 1982b *(published data only)*

Kopperberg 1977 *(published data only)*

Tabar L, Duffy SW, Krusemo UB. Detection method, tumour size and node metastases in breast cancers diagnosed

Malmö 1976 (published data only)

Andersson I. Personal communication 12 Feb 2001.

Andersson I. Personal communication 21 June 1999.

Andersson I. Detection bias in mammographic screening for breast carcinoma. Recent Results in Cancer Research 1984;**90**:164–5.

New York 1963 (published data only)

Final reports of National Cancer Institute ad hoc working groups on mammography screening for breast cancer and a summary report of their joint findings and recommendations. DHEW Publication No. (NIH) 77-1400.

Screening for breast cancer with mammography (Review)

Thomas LB, Ackerman LV, McDivitt RW, Hanson TAS, Hankey BE, Proctor PC. Report of NCI ad hoc pathology working group to review the gross and microscopic findings of breast cancer cases in the HIP study. Journal of the National Cancer Institute 1977;59(2):496–541.

Stockholm 1981 [published data only]

Frisell J. Personal communication 13 Nov 2000.

Frisell J. Personal communication 16 Nov 2000.

Frisell J, Ekland G, Hellstrom L, Glas U, Somell A. The Stockholm breast cancer screening trial - 5-year results and

Two-County 1977 *(published data only)*

Tåbar L. Personal communication 17 Jan 2000.

Tåbar L, Duffy SW. Criticisms of Swedish mammography trials were wrong [letter]. *BMJ* 1999; **319**:1367.

Tåbar L, Vitak B, Chen HH, et al. The Swedish Two-

UK age trial 1991 {published data only}

Östergötland 1978 {published data only}

Fagerberg G. Experience from randomized controlled breast screening with mammography in Ostergotland county, Sweden: a preliminary report. Recent Results in Cancer Research 1984;117:

References to studies excluded from this review

Berglund 2000 {published data only}

Dales 1979 {published data only}

Singapore 1994 {published data only}

Additional references

Alexander 1989

Alexander 1994

Alexander 1999

Alexander 2000

Andersson 1980

Andersson 1981

Andersson 1981a

Andersson 1983

Andersson 1988

Andersson 1988a
Andersson I. Mammografi för screening - kritisk inställning stöds av nya fynd [Screening with mammography - a critical attitude is supported by new findings]. *Läkartidningen* 1988;85(44):3666–9.

Andersson 1997

Andersson 1999a
Andersson I. Personal communication 15 June 1999.

Andersson 1999b
Andersson I. Personal communication 21 June 1999.

Andersson 2000

Andersson 2001
Andersson I. Personal communication 12 Feb 2001.

Armstrong 2007

Armesson 1995

Aron 1986

Atterstam 1999

Ballar 1997

Baines 1994

Baines 1995

Baines 1997

Baines 2001
Baines CJ. Personal communication 18 Jan 2001.

Baines 2005
Baines CJ. Personal communication 30 Nov 2005.

Barratt 1997

Barratt 1999

Barratt 2005

Barton 2001
BASO audit 2000

Baum 2000

Benjamin 1996

Berry 1998

Berry 2002

Bjurstam 1997

Bjurstam 2000
Bjurstam N. Personal communication 10 Oct 2000.

Bjurstam 2003

Blamey 2000

Boyle 2003

Brett 2001

Brewer 2007

Brodersen 2006

Brodersen 2007

Brown 1993

Bulow 2000

Chamberlain 1981

Cox 1997

Crowdson 2002

Darby 2005

Deeks 2003

Demissie 1998

Dixon-Woods 2001

Doll 1981
Screening for breast cancer with mammography (Review)

Domenighetti 2003

Douek 2003

Duffy 2002

Duffy 2003

Early Breast C 1995

Early Breast C 1998

Early Breast C 2000

Elmore 1998

Elwood 1993

Elwood 1998

Ernster 1996

Ernster 1997

Fagerberg 1985

Final reports 1977

Fink 1972

Fletcher 1993

Fletcher 2003

Fox 1979

Freedman 2004

Frisell 1986

Frisell 1989

Frisell 1989a

Frisell 1991
Screening for breast cancer with mammography (Review)

Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Frisell 1997

Frisell 2000a
Frisell J. Personal communication 13 Nov 2000.

Frisell 2000b
Frisell J. Personal communication 16 Nov 2000.

Glasziou 1992

Glasziou 1997

Gram 1990

Gray 1989

Gøtzsche 2000a

Gøtzsche 2001

Gøtzsche 2002

Gøtzsche 2002a

Gøtzsche 2002b

Gøtzsche 2004

Gøtzsche 2009

Habbema 1986

Hendrick 1997

Higgins 2008

Hofvind 2004

Humphrey 2002

Isacsson 1985

Janzon 1991

Jonsson 2005

Jørgensen 2004
Jørgensen 2006

Jørgensen 2009

Kerlikowske 1995

Kerlikowske 1997

Kösters 2003

Larsson 1996

Larsson 1997

Lerman 1991

Lidbrink 1996

Malin 2002

McNoe 1996

Miller 1992a

Miller 1992b

Miller 1993

Miller 1997

Miller 1997a

Miller 2000

Miller 2001

Miller 2002

Miller 2002a

Moody-Ayers 2000

Moss 2005

Moss 2006
Moss SM, Cuckle H, Evans A, Johns L, Waller M, Bobrow L, for the Trial Management Group. Effect of

Nyström 1997

Nattinger 2000

NBCC 2002

Newschaffer 2000

NHS leaflet 2001

Nielsen 1987

Nixon 2000

Nyström 1993

Nyström 1993a

Nyström 1996

Nyström 1997

Nyström 2000

Nyström 2002

Nyström 2002a
Nyström L. Personal communication 31 July 2002.

Nyström 2002b

Olsen 2003

Paci 2002

Paci 2004

Projektgruppen 1985

Prorok 2000
Prorok PC. Personal communication 2 Feb 2000.

Puffer 2003

Rapport 1982

Ries 2002

Roberts 1984
trial of screening for breast cancer: description of method.

Roberts 1990
Roberts MM, Alexander FE, Anderson TJ, Chetty U,
Donnan PT, Forrest P et al. Edinburgh trial of screening for
breast cancer: mortality at seven years. The Lancet 1990;
335(8684):241–6.

Schwartz 2004
Schwartz LM, Woloshin S, Fowler FJ Jr, Welch HG.
Enthusiasm for cancer screening in the United States.

Shapiro 1966
Shapiro S, Strax P, Venet L. Evaluation of periodic breast
cancer screening with mammography. Methodology and

Shapiro 1972
Shapiro S, Strax P, Venet L, Venet W. Changes in 5-year
breast cancer mortality in a breast cancer screening program.
Journal of the National Cancer Institute 1972;7:663–78.

Shapiro 1977
Shapiro S. Evidence on screening for breast cancer from a

Shapiro 1982
Shapiro S, Venet W, Strax P, Venet L, Roesser R. Ten-
to fourteen-year effect of screening on breast cancer mortality.

Shapiro 1985
Shapiro S, Venet W, Strax P, Venet L, Roesser R. Selection,
follow-up, and analysis in the Health Insurance Plan Study: a
randomized trial with breast cancer screening. Journal of

Shapiro 1985a
Shapiro S. Discussion II. Journal of the National Cancer

Shapiro 1988
Shapiro S, Venet W, Strax P, Venet L. Periodic screening
for breast cancer: The health insurance plan project and its
Press, 1988: The health insurance plan project and its
sequelae.

Shapiro 1989
Shapiro S. The status of breast cancer screening: a quarter

Shapiro 1994
Shapiro S. Screening: assessment of current studies. Cancer

Skrabanek 1993
Skrabanek P. Breast cancer screening with mammography

Slaytor 1998
Slaytor EK, Ward JE. How risks of breast cancer and
benefits of screening are communicated to women: analysis of

Smart 1995
Smart CR, Hendrick RE, Rutledge JH 3rd, Smith RA.
Benefit of mammography screening in women ages 40 to 49
years. Current evidence from randomized controlled trials.

Smith-Bindman 2003
Smith-Bindman R, Chu PW, Miglioretti DL, Sickses EA,
mammography in the United States and the United

Socialstyrelsen 1985
Socialstyrelsens beredningsgrupp för WE-projektet.
Minskad mortalitet i bröstcancer genom hälkontroll med

Statusrapport 1997
Unknown. Tidlig opsporing og behandling af brystkræft:

Strax 1973
Strax P, Venet L, Shapiro S. Value of mammography in
reduction of mortality from breast cancer in mass screening.
The American Journal of Roentgenology, Radiation Therapy,

Swed Cancer Soc 1996
Swedish Cancer Society and the Swedish National Board
of Health and Welfare. Breast-cancer screening with
mammography in women aged 40-49 years. International

Swift 1993
Swift M. Screening mammography [letter]. The Lancet

Tabor 1979
Tabor L, Gad A, Akerlund E, Fors B, Fagerberg G, Baldetorp
L. Screening for breast cancer in Sweden. A randomised
controlled trial. In: Logan WW, Muntz EP editor(s).
Reduced dose mammography. New York: Masson, 1979:
407–14.

Tabor 1980
Tabor L, Gad A. Screening for breast cancer: the Swedish

Tabor 1985
Tabor L, Fagerberg CJ, Gad A, Baldestorp L, Holmberg LH,
Grontoft O, et al. Reduction in mortality from breast cancer
after mass screening with mammography. Randomised trial from
the Breast Cancer Screening Working Group of the
Swedish National Board of Health and Welfare. Lancet

Tabor 1985a
Tabor L, Gad A, Holmberg L, Ljungquist U. Significant
reduction in advanced breast cancer. Results of the first
seven years of mammography screening in Kopparberg,
Sweden. Diagnostic Imaging in Clinical Medicine 1985;54
(3–4):158–64.

Tabor 1988
Tabor L, Fagerberg CJG, Day NE, The results of periodic
one-view mammographic screening in Sweden. Part 2:

Tabar 1989

Tabar 1990

Tabar 1991

Tabar 1992

Tabar 1995

Tabar 1999

Tabar 2000

Tabar 2000a
Tabar L. Personal communication 17 Jan 2000.

Tabar 2001

Tabar 2002

Tabar 2002a

Tabar 2003

Tabar 2003a

The Lancet Erratum 2002

Thomas 1977
Thomas LB, Ackerman LV, McDivitt RW, Hanson TAS, Hankey BE, Protok PC. Report of NCI ad hoc pathology working group to review the gross and microscopic findings of breast cancer cases in the HIP study. Journal of the National Cancer Institute 1977;59(2):496–541.

Thornton 1997

US Task Force 2002

Wald 1993

Walter 1999

Werkö 1995

Westerholm 1988

WHO 2002

Zahl 2001

Zahl 2004
Zahl 2006

References to other published versions of this review

Olsen 2001

Olsen 2001a

Olsen 2001b

* Indicates the major publication for the study.
CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Canada 1980

<table>
<thead>
<tr>
<th>Methods</th>
<th>Individual randomisation in blocks of 2 or 4, stratified by centre and 5-year age group (see also text) Cause of death was assessed blinded and independently by two specialists for women with diagnosed breast cancer and for other possible breast cancer deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Women aged 40-59 years. Number randomised: see below.</td>
</tr>
<tr>
<td>Interventions</td>
<td>Two-view mammography: craniocaudal and mediolateral (later mediolateral oblique except in two centres) 4-5 cycles of screening with yearly interval.</td>
</tr>
<tr>
<td>Notes</td>
<td>Attendance rate: 100% in first round. Mammography in control group: Screening of high risk groups not precluded (see also Canada 1980a and 1980b)</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Canada 1980a

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Women aged 40-49 years. 50,472 randomised. 59, distributed equally between the two groups, were excluded from analyses</td>
</tr>
<tr>
<td>Interventions</td>
<td>See Canada 1980. Screened women had an annual clinical examination while control women were examined at the first visit and were taught self-examination thereafter</td>
</tr>
<tr>
<td>Outcomes</td>
<td>See Canada 1980.</td>
</tr>
<tr>
<td>Notes</td>
<td>Attendance rate: 100% in first round, 89% in second, decreasing to 86% in fifth round Mammography in control group: 7% between first and second year, increasing to 18% between fourth and fifth year had a mammogram</td>
</tr>
</tbody>
</table>
Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Canada 1980b

Methods

See Canada 1980.

Participants

Women aged 50-59 years.
39,459 randomised.
54, distributed equally between the two groups, were excluded from analyses

Interventions

See Canada 1980.
All women had their breasts examined annually.

Outcomes

See Canada 1980.

Notes

Attendance rate: 100% in first round, 90% in second, decreasing to 87% in fifth round
Mammography in control group: 5% between first and second year, increasing to 8% between fourth and fifth year had a mammogram

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Edinburgh 1978

Methods

Stratified cluster randomisation; general practices were clusters; stratification was by size of practice. About 87 clusters (numbers vary in different reports, see also text)
Blinding of outcome assessment not stated.

Participants

Women aged 45-64 years.
Number of women and practices randomised inconsistently reported (see text)
Very biased exclusions occurred: exclusion procedures different in study and control group, 177 previous breast cancer cases excluded from control group and 338 from study group

Interventions

Two-view mammography at first screen: cranio-caudal and oblique (except in one practice); only oblique in later rounds
Screened group: mammography and physical examination year 1, 3, 5 and 7; physical examination year 2, 4 and 6
Control group: usual care.
Edinburgh 1978

Outcomes
- Total mortality.
- Breast cancer mortality.
- Radiotherapy.

Notes
- Attendance rate: Circa 60% in first round; 44% in seventh round.
- Mammography in control group: unknown.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>

Göteborg 1982

Methods
- See Göteborg 1982a and 1982b.

Participants
- Women aged 39-59 years.
- Number of women randomised: 21,904 to screening, 30,318 to control (see also text).
- 254 women (1.2%) excluded from the screening group and 357 (1.2%) from the control group due to a history of breast carcinoma prior to randomisation.

Interventions
- See Göteborg 1982a and 1982b.

Outcomes
- Total mortality.
- Breast cancer mortality.

Notes
- Mammography in control group: 18% during last two years.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Göteborg 1982a

Methods
- Individual randomisation within year of birth cohort - by day of birth in the cohorts 1923-1935 and by computer software for the cohorts 1936-1944 - randomisation ratio varied by cohort, on average approximately 1:1.2 (see also text).
- Blinding of outcome assessment.

Participants
- Women aged 39-49 years.
- Number of women randomised: 11,792 to screening, 14,321 to control (see also text).
- 68 women (0.6%) excluded from the screening group and 104 (0.7%) from the control group due to a history of breast carcinoma prior to randomisation.
Göteborg 1982a (Continued)

| Interventions | Two-view mammography at first screen, single at later rounds - single read at first three rounds; double read thereafter
| | 5 cycles with an interval of 18 months.
	Control group: usual care.
Outcomes	Total mortality.
	Breast cancer mortality.
Notes	Attendance rate: 85%, 78%, 79%, 77%, 75% in rounds 1-5.
	66% at first screen in control group.
	Mammography in control group: 19% during last two years; 51% ever.
	Early systematic screening of control group.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Göteborg 1982b

| Methods | Individual randomisation by computer software - randomisation ratio varied by cohort, on average approximately 1:1.6
	Blinding of outcome assessment.
Participants	Women aged 50-59 years.
	Number of women randomised not stated explicitly, but can be calculated by comparing two trial reports (see Göteborg 1992 above for total numbers)
Interventions	Two-view mammography at first screen, single at later rounds - single read at first three rounds; double read thereafter
	4 cycles with an interval of 18 months.
	Control group: usual care.
Outcomes	Total mortality.
	Breast cancer mortality.
Notes	Attendance rate: 83% at first screen.
	78% at first screen in control group.
	Early systematic screening of control group.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>
Kopparberg 1977

Methods
- Stratified cluster randomisation; seven blocks each contained 3 units (in three blocks the units were parishes and in four municipalities); randomisation ratio 2:1 (see also text)
- Blinding of outcome assessment not stated.

Participants
- Women aged 40 years and above.
- 21 units randomised: 47,389 women in screening areas and 22,658 in control areas (33,641 vs. 16,359 in age group 40-69 years; 39,051 versus 18,846 in age group 40-74 years)
- No parishes or municipalities excluded. Exclusion criteria for patients unclear but probably biased (see text)

Interventions
- One-view mammography, mediolateral oblique; additional views on suspicion
- Number of screenings: two cycles prestated, but more may have occurred (see text).
- Interval between screens were 2 years for women aged 40-49 years; 3 years for women aged 50 years and above

Outcomes
- Total mortality.
- Breast cancer mortality.
- Surgical interventions.
- Chemotherapy.
- Radiotherapy.

Notes
- Attendance rate: 91-94% for women younger than 60 years; 50-80% for women above 60 years
- Unclear when screening started in control group (see text).
- Early systematic screening of control group.

Malmo 1976

Methods
- Individual randomisation; within each birth cohort a computer list was randomised and the first half invited for screening
- Blinding of outcome assessment: deaths among breast cancer cases assessed blinded and independently by a pathologist and an oncologist; discrepancies resolved by an internist

Participants
- Women aged 45-69 years.
- 21,242 randomised into screened group; 21,240 or 21,244 into control group (see text)
- Biased exclusions seem to have occurred: 154 women excluded from control group, 49 from study group (see text)

Interventions
- One-view or two-view mammography; two-view in 1st and 2nd round; one-view or two-view in later rounds depending on parenchymal pattern
- 5-6 cycles according to protocol; 8 cycles in 1988; more during 1988-1992
- Interval between screens: 18-24 months.
- Control group: usual care.
Malmö 1976 (Continued)

| Outcomes | Total mortality.
Breast cancer mortality.
Surgical interventions.
Chemotherapy.
Radiotherapy. |
|---|------------------|

| Notes | Attendance rate: Circa 70%; 74% in first round ranging from 64% in oldest age group to 79% in youngest
Mammography in control group: screening offered to age group 50-69 years in 1991; invited in 1992 and completed in 1993
6% had more than 3 mammograms during study; 24% had one or more; 35% among women aged 45-49 years at entry |
|---|--|

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Malmö II 1978

Methods

See text of the review; extension of Malmö 1976.

Participants

Interventions

Outcomes

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>

New York 1963

Methods

Individual randomisation within matched pairs; pairs derived from a computer list sorted by age, family size and employment group
A blinded review was carried out in a subsample of death certificates where cause of death was breast cancer. The panel much more often stated breast cancer as cause of death in the control group

Participants

Women aged 40-64 years.
Probably 31,092 pairs of women were randomised into screening and control group
Very biased exclusions occurred: probably 336 previous breast cancer cases were excluded from the control group and 853 from study group (see text)
New York 1963

<table>
<thead>
<tr>
<th>Interventions</th>
<th>Two view mammography: cephalocaudal and lateral. 4 cycles (three were planned according to the first publications) Screened group: annual physical examinations. Control group: usual care.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Attendance rate: 65% in total population, circa 58%, 50% and 40% participated in 2, 3 and 4 screens, respectively Mammography in control group: not described.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Stockholm 1981

<table>
<thead>
<tr>
<th>Methods</th>
<th>Individual randomisation by day of birth; 1-10 and 21-31 in study group and 11-20 in control group (see also text) Blinding of outcome assessment: not stated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Women aged 40-64 years. Number of women randomised inconsistently reported (see text) Exclusions after randomisation unclear (see text).</td>
</tr>
<tr>
<td>Interventions</td>
<td>Single oblique mammography; recalled for conventional three-view if malignancies suspected 2 cycles (number not predetermined - screening introduced in control group because of results from Kopparberg) Circa 2 years; 2.5 years to complete first round and 2.1 to complete second round Control group: usual care.</td>
</tr>
<tr>
<td>Notes</td>
<td>Attendance rate: circa 80%. Mammography in control group: 8% during one year; 25% in study group during two years previous to screening Early systematic screening of control group.</td>
</tr>
</tbody>
</table>

Risk of bias
Stockholm 1981 (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Two-County 1977

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratified cluster randomisation (see Kopparberg 1977 and Östergötland 1978 for details)</td>
<td>Blinding of cause of death assessments in some later updates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
<th>Women aged 40-74 years. (See Kopparberg 1977 and Östergötland 1978 for details).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventions</td>
<td>See Kopparberg 1977 and Östergötland 1978. Screened women were encouraged to perform self-examination of the breasts every month Control women: usual care.</td>
</tr>
<tr>
<td>Notes</td>
<td>See Kopparberg 1977 and Östergötland 1978.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>

UK age trial 1991

<table>
<thead>
<tr>
<th>Method</th>
<th>Individual randomisation by computer; randomisation ratio 1:2 Information on cause of death was obtained from the central register of the National Health Service</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
<th>Women aged 39-41 years. 53,914 randomised into screened group; 107,007 into control group 30 and 51 excluded after randomisation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventions</td>
<td>Two-view mammography at first screen, and by single mediolateral oblique view thereafter, with recall for full assessment if an abnormality was suspected 7 annual screens planned. Control group: usual care.</td>
</tr>
<tr>
<td>Notes</td>
<td>Number of cancers in latest report given per 1000 women-years</td>
</tr>
</tbody>
</table>

Risk of bias
UK age trial 1991 (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>A - Adequate</td>
</tr>
</tbody>
</table>

Östergötland 1978

Methods
Stratified cluster randomisation; 12 blocks (consisting of 164 parishes in total) were each split into 2 units of roughly equal size and socio-economic composition; randomisation ratio 1:1 (see also text) Blinding of outcome assessment not stated.

Participants
Women aged 40 years and above.
24 units with 92,934 women randomised into 47,001 in screening parishes and 45,933 in control parishes (39,034 versus 37,936 in age group 40-74 years)
No parishes or municipalities excluded.
Women with a previous history of breast cancer were excluded after randomisation; exclusions seem unbiased (see text)

Interventions
One-view mammography, mediolateral oblique; women who reported a lump were examined clinically and by complete mammography
2 screens for women above 70 years, 3 for women originally in age group 40-69 years
Interval between screens: 2-2.5 years.

Outcomes
Total mortality.
Breast cancer mortality.

Notes
Attendance rate: ca. 90% in first round, 80% in second, very age dependent
Mammography in control group: no data.
Early systematic screening of control group.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>No</td>
<td>C - Inadequate</td>
</tr>
</tbody>
</table>

Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berglund 2000</td>
<td>Multiple risk factor intervention study, with several interventions, incl. mammography, not a randomised trial but alternating allocation of birth year cohorts with resulting age differences at baseline between the two groups; 50 women died from cancer of 8,712 participants, no data on breast cancer</td>
</tr>
<tr>
<td>Study</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dales 1979</td>
<td>Multiple risk factor intervention trial, with several interventions, regular mammography was only one of the interventions and only about 1000 women were invited for mammography</td>
</tr>
<tr>
<td>Singapore 1994</td>
<td>Singapore Breast Screening Project. Randomised 166,600 women aged 50-64 years, but the only intervention was the prevalence screen, and exclusions after randomisation occurred only in the screened group. Previous cancer at any site was an exclusion criterion; more than 1500 women were excluded from the screened group, 468 because they were already dead</td>
</tr>
</tbody>
</table>
DATA AND ANALYSES

Comparison 1. Screening with mammography versus no screening

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Deaths ascribed to breast cancer, 7 years follow up</td>
<td>11</td>
<td>616327</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.81 [0.72, 0.90]</td>
</tr>
<tr>
<td>1.1 Adequately randomised trials</td>
<td>4</td>
<td>292958</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.93 [0.79, 1.09]</td>
</tr>
<tr>
<td>1.2 Suboptimally randomised trials</td>
<td>7</td>
<td>323369</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.71 [0.61, 0.83]</td>
</tr>
<tr>
<td>2 Deaths ascribed to breast cancer, 13 years follow up</td>
<td>9</td>
<td>599090</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.81 [0.74, 0.87]</td>
</tr>
<tr>
<td>2.1 Adequately randomised trials</td>
<td>4</td>
<td>292153</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.90 [0.79, 1.02]</td>
</tr>
<tr>
<td>2.2 Suboptimally randomised trials</td>
<td>5</td>
<td>306937</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.75 [0.67, 0.83]</td>
</tr>
<tr>
<td>3 Deaths ascribed to breast cancer, 7 years follow up, women below 50 years of age (Malmö 55)</td>
<td>9</td>
<td>356368</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.89 [0.77, 1.04]</td>
</tr>
<tr>
<td>3.1 Adequately randomised trials</td>
<td>3</td>
<td>227333</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.94 [0.78, 1.14]</td>
</tr>
<tr>
<td>3.2 Suboptimally randomised trials</td>
<td>6</td>
<td>129035</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.81 [0.63, 1.05]</td>
</tr>
<tr>
<td>4 Deaths ascribed to breast cancer, 7 years follow up, women at least 50 years of age (Malmö 55)</td>
<td>7</td>
<td>261044</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.72 [0.62, 0.85]</td>
</tr>
<tr>
<td>4.1 Adequately randomised trials</td>
<td>2</td>
<td>65625</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.88 [0.64, 1.20]</td>
</tr>
<tr>
<td>4.2 Suboptimally randomised trials</td>
<td>5</td>
<td>195419</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.67 [0.56, 0.81]</td>
</tr>
<tr>
<td>5 Deaths ascribed to breast cancer, 13 years follow up, women below 50 years of age</td>
<td>8</td>
<td>329511</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.84 [0.73, 0.96]</td>
</tr>
<tr>
<td>5.1 Adequately randomised trials</td>
<td>3</td>
<td>218697</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.87 [0.73, 1.03]</td>
</tr>
<tr>
<td>5.2 Suboptimally randomised trials</td>
<td>5</td>
<td>110814</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.80 [0.64, 0.98]</td>
</tr>
<tr>
<td>6 Deaths ascribed to breast cancer, 13 years follow up, women at least 50 years of age</td>
<td>7</td>
<td>268874</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.77 [0.69, 0.86]</td>
</tr>
<tr>
<td>6.1 Adequately randomised trials</td>
<td>2</td>
<td>74261</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.94 [0.77, 1.15]</td>
</tr>
<tr>
<td>6.2 Suboptimally randomised trials</td>
<td>5</td>
<td>194613</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.70 [0.62, 0.80]</td>
</tr>
<tr>
<td>Year Follow Up</td>
<td>Group</td>
<td>Trials</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>7</td>
<td>Deaths ascribed to any cancer, all women</td>
<td>6</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>7.1</td>
<td>Adequately randomised trials</td>
<td>3</td>
<td>132118 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.02 [0.95, 1.10]</td>
</tr>
<tr>
<td>7.2</td>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>3</td>
<td>195871 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.93, 1.06]</td>
</tr>
<tr>
<td>8</td>
<td>Overall mortality, 7 years follow up</td>
<td>11</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>8.1</td>
<td>Adequately randomised trials</td>
<td>4</td>
<td>292958 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.98 [0.94, 1.03]</td>
</tr>
<tr>
<td>8.2</td>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>7</td>
<td>324977 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.96, 1.02]</td>
</tr>
<tr>
<td>9</td>
<td>Overall mortality, 13 years follow up</td>
<td>8</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>9.1</td>
<td>Adequately randomised trials</td>
<td>4</td>
<td>292958 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.95, 1.03]</td>
</tr>
<tr>
<td>9.2</td>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>4</td>
<td>244868 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.97, 1.01]</td>
</tr>
<tr>
<td>10</td>
<td>Overall mortality, 7 years follow up, women below 50 years of age</td>
<td>7</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>10.1</td>
<td>Adequately randomised trials</td>
<td>2</td>
<td>211270 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.90, 1.04]</td>
</tr>
<tr>
<td>10.2</td>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>5</td>
<td>99656 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.07 [0.98, 1.16]</td>
</tr>
<tr>
<td>11</td>
<td>Overall mortality, 7 years follow up, women at least 50 years of age</td>
<td>5</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>11.1</td>
<td>Adequately randomised trials</td>
<td>1</td>
<td>39405 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.01 [0.85, 1.20]</td>
</tr>
<tr>
<td>11.2</td>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>4</td>
<td>161519 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.94, 1.00]</td>
</tr>
<tr>
<td>12</td>
<td>Overall mortality, 13 years follow up, women below 50 years of age</td>
<td>6</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>12.1</td>
<td>Adequately randomised trials</td>
<td>3</td>
<td>219324 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.98 [0.92, 1.04]</td>
</tr>
<tr>
<td>12.2</td>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>3</td>
<td>61344 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.00 [0.92, 1.10]</td>
</tr>
<tr>
<td>13</td>
<td>Overall mortality, 13 years follow up, women at least 50 years of age</td>
<td>4</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>13.1</td>
<td>Adequately randomised trials</td>
<td>2</td>
<td>73634 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.00 [0.95, 1.04]</td>
</tr>
<tr>
<td>13.2</td>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>2</td>
<td>98261 Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.97, 1.02]</td>
</tr>
<tr>
<td>14</td>
<td>Number of mastectomies and lumpectomies</td>
<td>5</td>
<td>250479</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.35 [1.26, 1.44]</td>
</tr>
<tr>
<td></td>
<td>Adequately randomised trials</td>
<td>3</td>
<td>132321</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.31 [1.22, 1.42]</td>
</tr>
<tr>
<td></td>
<td>Suboptimally randomised trials</td>
<td>2</td>
<td>118158</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.42 [1.26, 1.61]</td>
</tr>
<tr>
<td>15</td>
<td>Number of mastectomies</td>
<td>5</td>
<td>250479</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.20 [1.11, 1.30]</td>
</tr>
<tr>
<td></td>
<td>Adequately randomised trials</td>
<td>3</td>
<td>132321</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.20 [1.08, 1.32]</td>
</tr>
<tr>
<td></td>
<td>Suboptimally randomised trials</td>
<td>2</td>
<td>118158</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.21 [1.06, 1.38]</td>
</tr>
<tr>
<td>16</td>
<td>Number treated with radiotherapy</td>
<td>2</td>
<td>100383</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.32 [1.16, 1.50]</td>
</tr>
<tr>
<td></td>
<td>Adequately randomised trials</td>
<td>1</td>
<td>42486</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.24 [1.04, 1.49]</td>
</tr>
<tr>
<td></td>
<td>Suboptimally randomised trials</td>
<td>1</td>
<td>57897</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.40 [1.17, 1.69]</td>
</tr>
<tr>
<td>17</td>
<td>Number treated with chemotherapy</td>
<td>2</td>
<td>100383</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 0.96 [0.78, 1.19]</td>
</tr>
<tr>
<td></td>
<td>Adequately randomised trials</td>
<td>1</td>
<td>42486</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 0.63 [0.39, 1.04]</td>
</tr>
<tr>
<td></td>
<td>Suboptimally randomised trials</td>
<td>1</td>
<td>57897</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.06 [0.84, 1.34]</td>
</tr>
<tr>
<td>18</td>
<td>Number treated with hormone therapy</td>
<td>2</td>
<td>100383</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 0.73 [0.55, 0.96]</td>
</tr>
<tr>
<td></td>
<td>Adequately randomised trials</td>
<td>1</td>
<td>42486</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 0.81 [0.60, 1.08]</td>
</tr>
<tr>
<td></td>
<td>Suboptimally randomised trials</td>
<td>1</td>
<td>57897</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 0.30 [0.12, 0.72]</td>
</tr>
<tr>
<td>19</td>
<td>Mortality among breast cancer patients in the Two-County study, 7 years follow up</td>
<td>2</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 2.42 [1.00, 5.85]</td>
</tr>
<tr>
<td></td>
<td>Mortality from cancers other than breast cancer</td>
<td>2</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) 1.37 [0.93, 2.04]</td>
</tr>
<tr>
<td>20</td>
<td>Results for biased trial</td>
<td>1</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) Not estimable</td>
</tr>
<tr>
<td></td>
<td>Deaths ascribed to breast cancer, 7 years follow up</td>
<td>1</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) Not estimable</td>
</tr>
<tr>
<td></td>
<td>Deaths ascribed to breast cancer, 13 years follow up</td>
<td>1</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) Not estimable</td>
</tr>
<tr>
<td></td>
<td>Deaths ascribed to breast cancer, 7 years follow up, younger women (below 50 years of age)</td>
<td>1</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) Not estimable</td>
</tr>
<tr>
<td></td>
<td>Deaths ascribed to breast cancer, 7 years follow up, elderly women (at least 50 years of age)</td>
<td>1</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI) Not estimable</td>
</tr>
</tbody>
</table>
Analysis 1.1. Comparison 1 Screening with mammography versus no screening, Outcome 1 Deaths ascribed to breast cancer, 7 years follow up.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening
Outcome: 1 Deaths ascribed to breast cancer, 7 years follow up

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio (M-H, Fixed, 95% CI)</th>
<th>Weight</th>
<th>Risk Ratio (M-H, Fixed, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>38/25214</td>
<td>28/25216</td>
<td>1.36 [0.83, 2.21]</td>
<td>4.1 %</td>
<td>1.36 [0.83, 2.21]</td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>38/19711</td>
<td>39/19694</td>
<td>0.97 [0.62, 1.52]</td>
<td>5.7 %</td>
<td>0.97 [0.62, 1.52]</td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>63/21088</td>
<td>66/21195</td>
<td>0.96 [0.68, 1.35]</td>
<td>9.6 %</td>
<td>0.96 [0.68, 1.35]</td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>105/53884</td>
<td>251/106956</td>
<td>0.83 [0.66, 1.04]</td>
<td>24.4 %</td>
<td>0.83 [0.66, 1.04]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>119897</td>
<td>173061</td>
<td>43.7 %</td>
<td>0.93 [0.79, 1.09]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 244 (Screening), 384 (No screening)
Heterogeneity: Chi² = 3.33, df = 3 (P = 0.34; I² = 10%)
Test for overall effect: Z = 0.92 (P = 0.36)

2 Suboptimally randomised trials

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio (M-H, Fixed, 95% CI)</th>
<th>Weight</th>
<th>Risk Ratio (M-H, Fixed, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goteborg 1982a</td>
<td>6/10821</td>
<td>10/13101</td>
<td>1.3 %</td>
<td>1.3 %</td>
<td>0.73 [0.26, 2.00]</td>
</tr>
<tr>
<td>Goteborg 1982b</td>
<td>2/19903</td>
<td>37/15708</td>
<td>4.2 %</td>
<td>4.2 %</td>
<td>0.90 [0.53, 1.54]</td>
</tr>
</tbody>
</table>

Favours screening
Favours no screening
(Continued...)
<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening n/N</th>
<th>No screening n/N</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight %</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopparberg 1977</td>
<td>71/39051</td>
<td>52/18846</td>
<td></td>
<td>10.2 %</td>
<td>0.66 [0.46, 0.94]</td>
</tr>
<tr>
<td>Malm II 1978</td>
<td>29/9581</td>
<td>33/8212</td>
<td></td>
<td>5.2 %</td>
<td>0.75 [0.46, 1.24]</td>
</tr>
<tr>
<td>New York 1963</td>
<td>81/31000</td>
<td>124/31000</td>
<td></td>
<td>18.0 %</td>
<td>0.65 [0.49, 0.86]</td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>53/38525</td>
<td>40/20651</td>
<td></td>
<td>7.6 %</td>
<td>0.71 [0.47, 1.07]</td>
</tr>
<tr>
<td>Sterngtland 1978</td>
<td>53/39034</td>
<td>67/37936</td>
<td></td>
<td>9.9 %</td>
<td>0.77 [0.54, 1.10]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>177915</td>
<td>145454</td>
<td></td>
<td>56.3 %</td>
<td>0.71 [0.61, 0.83]</td>
</tr>
</tbody>
</table>

Total events: 314 (Screening), 363 (No screening)
Heterogeneity: Chi² = 1.51, df = 6 (P = 0.96); I² =0.0%
Test for overall effect: Z = 4.37 (P = 0.000012)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening n/N</th>
<th>No screening n/N</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight %</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (95% CI)</td>
<td>297812</td>
<td>318515</td>
<td></td>
<td>100.0 %</td>
<td>0.81 [0.72, 0.90]</td>
</tr>
</tbody>
</table>

Total events: 558 (Screening), 747 (No screening)
Heterogeneity: Chi² = 10.22, df = 10 (P = 0.42); I² =2%
Test for overall effect: Z = 3.81 (P = 0.000014)
Analysis 1.2. Comparison 1 Screening with mammography versus no screening, Outcome 2 Deaths ascribed to breast cancer, 13 years follow up.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 2 Deaths ascribed to breast cancer, 13 years follow up

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>105/25214</td>
<td>108/25216</td>
<td>8.6 %</td>
<td>0.97 [0.74, 1.27]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>107/19714</td>
<td>105/19694</td>
<td>8.3 %</td>
<td>1.02 [0.78, 1.33]</td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>87/20695</td>
<td>108/20783</td>
<td>8.5 %</td>
<td>0.81 [0.61, 1.07]</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>105/53884</td>
<td>251/106956</td>
<td>13.3 %</td>
<td>0.83 [0.66, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>119504</td>
<td>172649</td>
<td>38.7 %</td>
<td>0.90 [0.79, 1.02]</td>
<td></td>
</tr>
<tr>
<td>Total events: 404 (Screening), 572 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Heterogeneity: Chi² = 2.16, df = 3 (P = 0.54); I² = 0.0%
| Test for overall effect: Z = 1.64 (P = 0.10) |

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gotteborg 1982</td>
<td>88/21650</td>
<td>162/29961</td>
<td>10.8 %</td>
<td>0.75 [0.58, 0.97]</td>
<td></td>
</tr>
<tr>
<td>Kopperberg 1977</td>
<td>126/38589</td>
<td>104/18582</td>
<td>11.1 %</td>
<td>0.58 [0.45, 0.76]</td>
<td></td>
</tr>
<tr>
<td>New York 1963</td>
<td>218/31000</td>
<td>262/31000</td>
<td>20.7 %</td>
<td>0.83 [0.70, 1.00]</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>66/40318</td>
<td>45/19943</td>
<td>4.8 %</td>
<td>0.73 [0.50, 1.06]</td>
<td></td>
</tr>
<tr>
<td>Stergland 1978</td>
<td>135/38491</td>
<td>173/37403</td>
<td>13.9 %</td>
<td>0.76 [0.61, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>170048</td>
<td>136889</td>
<td>61.3 %</td>
<td>0.75 [0.67, 0.83]</td>
<td></td>
</tr>
<tr>
<td>Total events: 633 (Screening), 746 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Heterogeneity: Chi² = 4.94, df = 4 (P = 0.29); I² = 19%
| Test for overall effect: Z = 5.34 (P < 0.00001) |

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>289552</td>
<td>309538</td>
<td>100.0 %</td>
<td>0.81 [0.74, 0.87]</td>
<td></td>
</tr>
<tr>
<td>Total events: 1037 (Screening), 1318 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Heterogeneity: Chi² = 11.82, df = 8 (P = 0.16); I² = 32%
| Test for overall effect: Z = 5.15 (P < 0.00001) |
Analysis 1.3. Comparison 1 Screening with mammography versus no screening, Outcome 3 Deaths ascribed to breast cancer, 7 years follow up, women below 50 years of age (Malmö 55).

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 3 Deaths ascribed to breast cancer, 7 years follow up, women below 50 years of age (Malmö 55)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>38/25214</td>
<td>28/25216</td>
<td>8.1 % 1.36 [0.83, 2.21]</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>28/7981</td>
<td>22/8082</td>
<td>6.3 % 1.29 [0.74, 2.25]</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>105/53884</td>
<td>251/106956</td>
<td>48.5 % 0.83 [0.66, 1.04]</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>87079</td>
<td>140254</td>
<td></td>
<td>62.8 %</td>
<td>0.94 [0.78, 1.14]</td>
</tr>
<tr>
<td>Subtotal events:</td>
<td>171 (Screening), 301 (No screening)</td>
<td>Heterogeneity: Chi² = 4.55, df = 2 (P = 0.10); I² = 56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.59 (P = 0.56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göteborg 1982a</td>
<td>6/10821</td>
<td>10/13101</td>
<td>2.6 % 0.73 [0.26, 2.00]</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>12/9625</td>
<td>8/5053</td>
<td>3.0 % 0.79 [0.32, 1.93]</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Malmö II 1978</td>
<td>29/9581</td>
<td>33/8212</td>
<td>10.2 % 0.75 [0.46, 1.24]</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>New York 1963</td>
<td>39/14849</td>
<td>48/14911</td>
<td>13.8 % 0.82 [0.54, 1.24]</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>20/14842</td>
<td>12/7103</td>
<td>4.7 % 0.80 [0.39, 1.63]</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Skåne 1978</td>
<td>11/10312</td>
<td>10/10625</td>
<td>2.8 % 1.13 [0.48, 2.67]</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>70030</td>
<td>59005</td>
<td></td>
<td>37.2 %</td>
<td>0.81 [0.63, 1.05]</td>
</tr>
<tr>
<td>Subtotal events:</td>
<td>117 (Screening), 121 (No screening)</td>
<td>Heterogeneity: Chi² = 0.72, df = 5 (P = 0.98); I² = 0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.59 (P = 0.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>157109</td>
<td>199259</td>
<td></td>
<td>100.0 %</td>
<td>0.89 [0.77, 1.04]</td>
</tr>
<tr>
<td>Total events:</td>
<td>288 (Screening), 422 (No screening)</td>
<td>Heterogeneity: Chi² = 6.14, df = 8 (P = 0.63); I² = 0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.42 (P = 0.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis 1.4. Comparison 1 Screening with mammography versus no screening, Outcome 4 Deaths ascribed to breast cancer, 7 years follow up, women at least 50 years of age (Malmö 55).

Review:
Screening for breast cancer with mammography

Comparison:
1. Screening with mammography versus no screening

Outcome:
4. Deaths ascribed to breast cancer, 7 years follow up, women at least 50 years of age (Malmö 55)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>38/19711</td>
<td>39/19694</td>
<td>1.12 %</td>
<td>0.97 [0.62, 1.52]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>35/13107</td>
<td>44/13113</td>
<td>1.27 %</td>
<td>0.80 [0.51, 1.24]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>32818</td>
<td>32807</td>
<td>23.9 %</td>
<td>0.88 [0.64, 1.20]</td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>73 (Screening), 83 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 0.39, df = 1 (P = 0.53); I² = 0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.80 (P = 0.42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

			M-H,Fixed,95% CI		M-H,Fixed,95% CI
2 Suboptimally randomised trials					
Göteborg 1982b	21/9903	37/15708	8.2 %	0.90 [0.53, 1.54]	
Kopparberg 1977	59/29426	44/13793	17.2 %	0.63 [0.43, 0.93]	
New York 1963	52/16151	80/16089	23.1 %	0.65 [0.46, 0.92]	
Stockholm 1981	33/25476	28/12840	10.7 %	0.59 [0.36, 0.98]	
Stergbland 1978	42/28722	57/27311	16.8 %	0.70 [0.47, 1.04]	
Subtotal (95% CI)	109678	85741	76.1 %	0.67 [0.56, 0.81]	
Total events:	207 (Screening), 246 (No screening)				
Heterogeneity: Chi² = 1.58, df = 4 (P = 0.81); I² = 0.0%					
Test for overall effect: Z = 4.13 (P = 0.000037)					

			M-H,Fixed,95% CI		M-H,Fixed,95% CI
Total (95% CI)	142496	118548	100.0 %	0.72 [0.62, 0.85]	
Total events:	280 (Screening), 329 (No screening)				
Heterogeneity: Chi² = 4.02, df = 6 (P = 0.67); I² = 0.0%					
Test for overall effect: Z = 3.95 (P = 0.000077)					

Favours screening Favours no screening

Screening for breast cancer with mammography (Review)

Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Analysis 1.5. Comparison 1 Screening with mammography versus no screening, Outcome 5 Deaths ascribed to breast cancer, 13 years follow up, women below 50 years of age.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 5 Deaths ascribed to breast cancer, 13 years follow up, women below 50 years of age

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H (Fixed 95% CI)</th>
<th>Weight</th>
<th>Risk Ratio M-H (Fixed 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>105/25214</td>
<td>108/25216</td>
<td>22.2%</td>
<td>0.97</td>
<td>[0.74, 1.27]</td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>8/3658</td>
<td>16/3769</td>
<td>3.2%</td>
<td>0.52</td>
<td>[0.22, 1.20]</td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>105/53884</td>
<td>251/106956</td>
<td>34.5%</td>
<td>0.83</td>
<td>[0.66, 1.04]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>82756</td>
<td>135941</td>
<td>59.9%</td>
<td>0.87</td>
<td>[0.73, 1.03]</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gteborg 1982a</td>
<td>34/11724</td>
<td>59/14217</td>
<td>10.9%</td>
<td>0.70</td>
<td>[0.46, 1.06]</td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>22/9582</td>
<td>16/5031</td>
<td>4.3%</td>
<td>0.72</td>
<td>[0.38, 1.37]</td>
</tr>
<tr>
<td>New York 1963</td>
<td>64/13740</td>
<td>82/13740</td>
<td>16.8%</td>
<td>0.78</td>
<td>[0.56, 1.08]</td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>24/14842</td>
<td>12/7103</td>
<td>3.3%</td>
<td>0.96</td>
<td>[0.48, 1.91]</td>
</tr>
<tr>
<td>Stergtland 1978</td>
<td>23/10262</td>
<td>23/10573</td>
<td>4.7%</td>
<td>1.03</td>
<td>[0.58, 1.84]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>60150</td>
<td>50664</td>
<td>40.1%</td>
<td>0.80</td>
<td>[0.64, 0.98]</td>
</tr>
</tbody>
</table>

Total (95% CI) 142906 186605 100.0% 0.84 [0.73, 0.96]

Heterogeneity: Chi² = 4.19, df = 7 (P = 0.76); I² = 0.0%

Test for overall effect: Z = 2.63 (P = 0.0085)
Analysis 1.6. Comparison 1 Screening with mammography versus no screening, Outcome 6 Deaths ascribed to breast cancer, 13 years follow up, women at least 50 years of age.

Review: Screening for breast cancer with mammography
Comparison: 1 Screening with mammography versus no screening
Outcome: 6 Deaths ascribed to breast cancer, 13 years follow up, women at least 50 years of age

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening n/N</th>
<th>No screening n/N</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>107/19711</td>
<td>105/19694</td>
<td>14.5 % 1.02 [0.78, 1.33]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>79/17430</td>
<td>92/17426</td>
<td>12.7 % 0.86 [0.64, 1.16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>37141</td>
<td>37120</td>
<td>27.2 % 0.94 [0.77, 1.15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events: 186 (Screening), 197 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 0.69, df = 1 (P = 0.41); I² =0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.57 (P = 0.57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goteborg 1982b</td>
<td>54/9926</td>
<td>103/15744</td>
<td>11.0 % 0.83 [0.60, 1.15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>104/29007</td>
<td>88/13551</td>
<td>16.6 % 0.55 [0.42, 0.73]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York 1963</td>
<td>101/16505</td>
<td>130/16505</td>
<td>17.9 % 0.78 [0.60, 1.01]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>42/25476</td>
<td>33/12840</td>
<td>6.1 % 0.64 [0.41, 1.01]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stergalnd 1978</td>
<td>112/28229</td>
<td>150/26830</td>
<td>21.2 % 0.71 [0.56, 0.91]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>109143</td>
<td>85470</td>
<td>72.8 % 0.70 [0.62, 0.80]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events: 413 (Screening), 504 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 4.54, df = 4 (P = 0.34); I² =12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 5.28 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>146284</td>
<td>122590</td>
<td>100.0 % 0.77 [0.69, 0.86]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events: 599 (Screening), 701 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 11.22, df = 6 (P = 0.08); I² =47%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 4.73 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis 1.7. Comparison 1 Screening with mammography versus no screening, Outcome 7 Deaths ascribed to any cancer, all women.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 7 Deaths ascribed to any cancer, all women

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed 95% CI</td>
<td></td>
<td>M-H,Fixed 95% CI</td>
</tr>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>280/25214</td>
<td>285/25216</td>
<td>20.0 %</td>
<td>0.98 [0.83, 1.16]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>464/1971</td>
<td>403/19694</td>
<td>28.3 %</td>
<td>1.15 [1.01, 1.31]</td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>707/21088</td>
<td>739/21195</td>
<td>51.7 %</td>
<td>0.96 [0.87, 1.06]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>66013</td>
<td>66105</td>
<td>100.0 %</td>
<td>1.02 [0.95, 1.10]</td>
<td></td>
</tr>
<tr>
<td>Total events: 1451 (Screening), 1427 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi2 = 4.69, df = 2 ($P = 0.10$); I2 =57%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 0.52$ ($P = 0.61$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Suboptimally randomised trials (unreliable estimates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>666/39051</td>
<td>319/18846</td>
<td>24.6 %</td>
<td>1.01 [0.88, 1.15]</td>
<td></td>
</tr>
<tr>
<td>New York 1963</td>
<td>791/30239</td>
<td>823/30765</td>
<td>46.6 %</td>
<td>0.98 [0.89, 1.08]</td>
<td></td>
</tr>
<tr>
<td>Stergland 1978</td>
<td>510/39034</td>
<td>498/37936</td>
<td>28.8 %</td>
<td>1.00 [0.88, 1.13]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>108324</td>
<td>87547</td>
<td>100.0 %</td>
<td>0.99 [0.93, 1.06]</td>
<td></td>
</tr>
<tr>
<td>Total events: 1967 (Screening), 1640 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi2 = 0.14, df = 2 ($P = 0.93$); I2 =0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 0.29$ ($P = 0.77$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis 1.8. Comparison I Screening with mammography versus no screening, Outcome 8 Overall mortality, 7 years follow up.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 8 Overall mortality, 7 years follow up

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>159/25214</td>
<td>156/25216</td>
<td>4.4% 1.02 [0.82, 1.27]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>253/1971</td>
<td>250/19694</td>
<td>7.1% 1.01 [0.85, 1.20]</td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>1777/21088</td>
<td>1809/21195</td>
<td>51.1% 0.99 [0.93, 1.05]</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>960/53884</td>
<td>1975/106956</td>
<td>37.4% 0.96 [0.89, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>119897</td>
<td>173061</td>
<td>100.0% 0.98 [0.94, 1.03]</td>
<td></td>
</tr>
</tbody>
</table>

Suboptimally randomised trials (unreliable estimates)				
Goteborg 1982a	178/10888	185/13203	2.4% 1.17 [0.95, 1.43]	
Goteborg 1982b	349/10112	591/15997	6.4% 0.93 [0.82, 1.06]	
Kopparberg 1977	2593/39051	1216/18846	23.1% 1.03 [0.96, 1.10]	
Malm II 1978	402/9581	300/8212	4.5% 1.15 [0.99, 1.33]	
New York 1963	890/31000	940/31000	13.2% 0.95 [0.87, 1.04]	
Stockholm 1981	1768/39139	1036/20978	19.0% 0.91 [0.85, 0.99]	
Sterlingland 1978	2253/39034	2204/37936	31.4% 0.99 [0.94, 1.05]	
Subtotal (95% CI)	178805	146172	100.0% 0.99 [0.96, 1.02]	

Total events: 3149 (Screening), 4190 (No screening)

Heterogeneity: $\chi^2 = 0.45$, df = 3 ($P = 0.93$); $I^2 = 0.0$

Test for overall effect: $Z = 0.78$ ($P = 0.44$)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>159/25214</td>
<td>156/25216</td>
<td>4.4% 1.02 [0.82, 1.27]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>253/1971</td>
<td>250/19694</td>
<td>7.1% 1.01 [0.85, 1.20]</td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>1777/21088</td>
<td>1809/21195</td>
<td>51.1% 0.99 [0.93, 1.05]</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>960/53884</td>
<td>1975/106956</td>
<td>37.4% 0.96 [0.89, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>119897</td>
<td>173061</td>
<td>100.0% 0.98 [0.94, 1.03]</td>
<td></td>
</tr>
</tbody>
</table>

Suboptimally randomised trials (unreliable estimates)				
Goteborg 1982a	178/10888	185/13203	2.4% 1.17 [0.95, 1.43]	
Goteborg 1982b	349/10112	591/15997	6.4% 0.93 [0.82, 1.06]	
Kopparberg 1977	2593/39051	1216/18846	23.1% 1.03 [0.96, 1.10]	
Malm II 1978	402/9581	300/8212	4.5% 1.15 [0.99, 1.33]	
New York 1963	890/31000	940/31000	13.2% 0.95 [0.87, 1.04]	
Stockholm 1981	1768/39139	1036/20978	19.0% 0.91 [0.85, 0.99]	
Sterlingland 1978	2253/39034	2204/37936	31.4% 0.99 [0.94, 1.05]	
Subtotal (95% CI)	178805	146172	100.0% 0.99 [0.96, 1.02]	

Total events: 8433 (Screening), 6472 (No screening)

Heterogeneity: $\chi^2 = 13.75$, df = 6 ($P = 0.03$); $I^2 = 56$

Test for overall effect: $Z = 0.74$ ($P = 0.46$)
Analysis 1.9. Comparison 1 Screening with mammography versus no screening, Outcome 9 Overall mortality, 13 years follow up.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 9 Overall mortality, 13 years follow up

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>413/25214</td>
<td>413/25216</td>
<td>8.2 %</td>
<td>1.00 [0.87, 1.14]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>734/19711</td>
<td>690/19694</td>
<td>13.8 %</td>
<td>1.06 [0.96, 1.18]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>2537/21088</td>
<td>2593/21195</td>
<td>51.6 %</td>
<td>0.98 [0.93, 1.04]</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>960/53884</td>
<td>1975/106956</td>
<td>26.4 %</td>
<td>0.96 [0.89, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>119897</td>
<td>173061</td>
<td>100.0 %</td>
<td>0.99 [0.95, 1.03]</td>
<td></td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göteborg 1982</td>
<td>1430/21000</td>
<td>2241/29200</td>
<td>15.0 %</td>
<td>0.89 [0.83, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>6034/38568</td>
<td>2796/18479</td>
<td>30.2 %</td>
<td>1.03 [0.99, 1.08]</td>
<td></td>
</tr>
<tr>
<td>New York 1963</td>
<td>2062/30239</td>
<td>2116/30765</td>
<td>16.8 %</td>
<td>0.99 [0.94, 1.05]</td>
<td></td>
</tr>
<tr>
<td>Strängnäs 1978</td>
<td>4829/38942</td>
<td>4686/37675</td>
<td>38.1 %</td>
<td>1.00 [0.96, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>128749</td>
<td>116119</td>
<td>100.0 %</td>
<td>0.99 [0.97, 1.01]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 4644 (Screening), 5671 (No screening)
Heterogeneity: $\chi^2 = 2.38$, df = 3 ($P = 0.50$); $I^2 = 0.0$
Test for overall effect: $Z = 0.48$ ($P = 0.63$)

Total events: 14355 (Screening), 11839 (No screening)
Heterogeneity: $\chi^2 = 15.66$, df = 3 ($P = 0.001$); $I^2 = 81$
Test for overall effect: $Z = 0.77$ ($P = 0.44$)
Analysis 1.10. Comparison 1 Screening with mammography versus no screening, Outcome 10 Overall mortality, 7 years follow up, women below 50 years of age.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 10 Overall mortality, 7 years follow up, women below 50 years of age

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed 95% CI</td>
<td></td>
<td>M-H,Fixed 95% CI</td>
</tr>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>159/25214</td>
<td>156/25216</td>
<td>1.02 [0.82, 1.27]</td>
<td>10.5%</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>960/53884</td>
<td>1975/106956</td>
<td>0.96 [0.89, 1.04]</td>
<td>89.5%</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>79098</td>
<td>132172</td>
<td>0.97 [0.90, 1.04]</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>2 Suboptimally randomised trials (unreliable estimates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gteborg 1982a</td>
<td>178/10888</td>
<td>185/13203</td>
<td>1.17 [0.95, 1.43]</td>
<td>16.2%</td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>188/9582</td>
<td>745031</td>
<td>1.33 [1.02, 1.74]</td>
<td>9.4%</td>
<td></td>
</tr>
<tr>
<td>Malm II 1978</td>
<td>402/9581</td>
<td>300/8212</td>
<td>1.15 [0.99, 1.33]</td>
<td>31.3%</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>274/14303</td>
<td>172/8021</td>
<td>0.89 [0.74, 1.08]</td>
<td>21.4%</td>
<td></td>
</tr>
<tr>
<td>sverige 1978</td>
<td>204/10262</td>
<td>227/10573</td>
<td>0.93 [0.77, 1.12]</td>
<td>21.7%</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>54616</td>
<td>45040</td>
<td>1.07 [0.98, 1.16]</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 1119 (Screening), 2131 (No screening)

Heterogeneity: Chi² = 0.21, df = 1 (P = 0.64); I² = 0%

Test for overall effect: Z = 0.81 (P = 0.42)

Heterogeneity: Chi² = 10.00, df = 4 (P = 0.04); I² = 60%

Test for overall effect: Z = 1.49 (P = 0.14)
Analysis 1.11. Comparison 1: Screening with mammography versus no screening, Outcome 11: Overall mortality, 7 years follow up, women at least 50 years of age.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 11 Overall mortality, 7 years follow up, women at least 50 years of age

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>253/19711</td>
<td>250/19694</td>
<td>1.01 [0.85, 1.20]</td>
<td>100.0 %</td>
<td>1.01 [0.85, 1.20]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19711</td>
<td>19694</td>
<td></td>
<td>100.0 %</td>
<td>1.01 [0.85, 1.20]</td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gotteborg 1982b</td>
<td>349/10112</td>
<td>591/15997</td>
<td>0.93 [0.82, 1.06]</td>
<td>6.3 %</td>
<td>0.93 [0.82, 1.06]</td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>3485/29007</td>
<td>1619/13551</td>
<td>1.01 [0.95, 1.06]</td>
<td>30.6 %</td>
<td>1.01 [0.95, 1.06]</td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>1494/24836</td>
<td>864/12957</td>
<td>0.90 [0.83, 0.98]</td>
<td>15.7 %</td>
<td>0.90 [0.83, 0.98]</td>
</tr>
<tr>
<td>stergrantland 1978</td>
<td>3385/28229</td>
<td>3332/26830</td>
<td>0.97 [0.92, 1.01]</td>
<td>47.3 %</td>
<td>0.97 [0.92, 1.01]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>92184</td>
<td>69335</td>
<td></td>
<td>100.0 %</td>
<td>0.97 [0.94, 1.00]</td>
</tr>
</tbody>
</table>

Total events: 253 (Screening), 250 (No screening)

Heterogeneity: not applicable

Test for overall effect: Z = 0.12 (P = 0.90)

Total events: 8713 (Screening), 6406 (No screening)

Heterogeneity: Chi² = 5.02, df = 3 (P = 0.17); I² = 40%

Test for overall effect: Z = 2.19 (P = 0.028)
Analysis 1.12. Comparison of Screening with mammography versus no screening, Outcome 12 Overall mortality, 13 years follow up, women below 50 years of age.

Review: Screening for breast cancer with mammography

Comparison: Screening with mammography versus no screening

Outcome: Overall mortality, 13 years follow up, women below 50 years of age

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>413/252</td>
<td>413/2516</td>
<td>21.7 %</td>
<td>1.00 [0.87, 1.14]</td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>176/3987</td>
<td>170/4067</td>
<td>8.8 %</td>
<td>1.06 [0.86, 1.30]</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>960/53884</td>
<td>1975/106956</td>
<td>69.5 %</td>
<td>0.96 [0.89, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>83085</td>
<td>136239</td>
<td>100.0 %</td>
<td>0.98 [0.92, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gotteborg 1982a</td>
<td>409/11724</td>
<td>506/14217</td>
<td>49.5 %</td>
<td>0.98 [0.86, 1.11]</td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>309/9650</td>
<td>137/5009</td>
<td>19.5 %</td>
<td>1.17 [0.96, 1.43]</td>
<td></td>
</tr>
<tr>
<td>Stergotland 1978</td>
<td>265/10285</td>
<td>288/10459</td>
<td>30.9 %</td>
<td>0.94 [0.79, 1.10]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>31659</td>
<td>29685</td>
<td>100.0 %</td>
<td>1.00 [0.92, 1.10]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 1549 (Screening), 2558 (No screening)

Heterogeneity: $\chi^2 = 0.75$, df $= 2$ ($P = 0.69$); $I^2 = 0.0$

Test for overall effect: $Z = 0.61$ ($P = 0.54$)

Total events: 983 (Screening), 931 (No screening)

Heterogeneity: $\chi^2 = 3.15$, df $= 2$ ($P = 0.21$); $I^2 = 36$

Test for overall effect: $Z = 0.08$ ($P = 0.94$)
Analysis 1.13. Comparison 1 Screening with mammography versus no screening, Outcome 13 Overall mortality, 13 years follow up, women at least 50 years of age.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 13 Overall mortality, 13 years follow up, women at least 50 years of age

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening n/N</th>
<th>No screening n/N</th>
<th>Risk Ratio M-H, Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>734/19711</td>
<td>690/19694</td>
<td>22.2 % 1.06 [0.96, 1.18]</td>
<td>22.2 % 1.06 [0.96, 1.18]</td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>2361/17101</td>
<td>2423/17128</td>
<td>77.8 % 0.98 [0.93, 1.03]</td>
<td>77.8 % 0.98 [0.93, 1.03]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>36812</td>
<td>36822</td>
<td>100.0 % 1.00 [0.95, 1.04]</td>
<td>100.0 % 1.00 [0.95, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>5725/28918</td>
<td>2659/13470</td>
<td>44.6 % 1.00 [0.96, 1.05]</td>
<td>44.6 % 1.00 [0.96, 1.05]</td>
<td></td>
</tr>
<tr>
<td>Stergland 1978</td>
<td>4564/28657</td>
<td>4398/27216</td>
<td>55.4 % 0.99 [0.95, 1.02]</td>
<td>55.4 % 0.99 [0.95, 1.02]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>57575</td>
<td>40686</td>
<td>100.0 % 0.99 [0.97, 1.02]</td>
<td>100.0 % 0.99 [0.97, 1.02]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 3095 (Screening), 3113 (No screening)

Heterogeneity: Chi² = 2.13, df = 1 (P = 0.14); I² = 53%

Test for overall effect: Z = 0.20 (P = 0.84)

Total events: 10289 (Screening), 7057 (No screening)

Heterogeneity: Chi² = 0.37, df = 1 (P = 0.53); I² = 0.0%

Test for overall effect: Z = 0.47 (P = 0.64)
Analysis 1.14. Comparison 1 Screening with mammography versus no screening, Outcome 14 Number of mastectomies and lumpectomies.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 14 Number of mastectomies and lumpectomies

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>415/25214</td>
<td>313/25216</td>
<td>1.33 [1.15, 1.53]</td>
<td>20.4 %</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>448/19711</td>
<td>351/19694</td>
<td>1.28 [1.11, 1.46]</td>
<td>22.9 %</td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>561/21242</td>
<td>419/21244</td>
<td>1.34 [1.18, 1.52]</td>
<td>27.3 %</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>66167</td>
<td>66154</td>
<td></td>
<td>70.6 %</td>
<td>1.31 [1.22, 1.42]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>621/39051</td>
<td>216/18846</td>
<td>1.39 [1.19, 1.62]</td>
<td>19.0 %</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>360/40318</td>
<td>120/19943</td>
<td>1.48 [1.21, 1.82]</td>
<td>10.5 %</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>79369</td>
<td>38789</td>
<td></td>
<td>29.4 %</td>
<td>1.42 [1.26, 1.61]</td>
</tr>
</tbody>
</table>

Total events: 1424 (Screening), 1083 (No screening)

Heterogeneity: $\chi^2 = 0.28$, df $= 2$ ($P = 0.87$); $I^2 = 0.0$

Test for overall effect: $Z = 6.85$ ($P < 0.00001$)

Total (95% CI) 145536 104943

Heterogeneity: $\chi^2 = 1.64$, df $= 4$ ($P = 0.80$); $I^2 = 0.0$

Test for overall effect: $Z = 8.81$ ($P < 0.00001$)
Analysis 1.15. Comparison 1 Screening with mammography versus no screening, Outcome 15 Number of mastectomies.

Review: Screening for breast cancer with mammography
Comparison: 1 Screening with mammography versus no screening
Outcome: 15 Number of mastectomies

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H, Fixed, 95% CI</td>
<td></td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>183/25214</td>
<td>157/25216</td>
<td>14.7 %</td>
<td>1.17 [0.94, 1.44]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>197/197</td>
<td>176/19694</td>
<td>16.4 %</td>
<td>1.12 [0.91, 1.37]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>424/2432</td>
<td>339/244</td>
<td>31.6 %</td>
<td>1.25 [1.09, 1.44]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>66167</td>
<td>66154</td>
<td>62.7 %</td>
<td>1.20 [1.08, 1.32]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 804 (Screening), 672 (No screening)
Heterogeneity: Chi² = 0.86, df = 2 (P = 0.65); I² = 0%
Test for overall effect: Z = 3.45 (P = 0.00056)

2 Suboptimally randomised trials

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H, Fixed, 95% CI</td>
<td></td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>475/3905</td>
<td>196/18846</td>
<td>24.7 %</td>
<td>1.17 [0.99, 1.38]</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>263/4031</td>
<td>101/19844</td>
<td>12.6 %</td>
<td>1.29 [1.02, 1.62]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>79369</td>
<td>38789</td>
<td>37.3 %</td>
<td>1.21 [1.06, 1.38]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 738 (Screening), 297 (No screening)
Heterogeneity: Chi² = 0.45, df = 1 (P = 0.50); I² = 0%
Test for overall effect: Z = 2.78 (P = 0.0054)

Total (95% CI) | **145536** | **104943** | **100.0 %** | **1.20 [1.11, 1.30]** | |

Total events: 1542 (Screening), 969 (No screening)
Heterogeneity: Chi² = 1.33, df = 4 (P = 0.86); I² = 0%
Test for overall effect: Z = 4.43 (P < 0.00001)
Analysis 1.16. Comparison 1 Screening with mammography versus no screening, Outcome 16 Number treated with radiotherapy.

Review: Screening for breast cancer with mammography
Comparison: 1 Screening with mammography versus no screening
Outcome: 16 Number treated with radiotherapy

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening n/N</th>
<th>No screening n/N</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>260/21242</td>
<td>209/21244</td>
<td>1.24 [1.04, 1.49]</td>
<td>51.0 %</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>21242</td>
<td>21244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>260 (Screening), 209 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.36 (P = 0.018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Suboptimally randomised trials					
Kopparberg 1977	433/39051	149/18846	1.40 [1.17, 1.69]	49.0 %	
Subtotal (95% CI)	**39051**	**18846**			
Total events:	433 (Screening), 149 (No screening)				
Heterogeneity: not applicable					
Test for overall effect: Z = 3.58 (P = 0.00035)					

Total (95% CI)	**60293**	**40090**			
Total events:	693 (Screening), 358 (No screening)				
Heterogeneity: \(\chi^2 = 0.82, df = 1 (P = 0.366) , I^2 =0.0\%					
Test for overall effect: Z = 4.22 (P = 0.000024)					

0.2 0.5 1 2 5
Favours screening Favours no screening
Analysis 1.17. Comparison 1 Screening with mammography versus no screening, Outcome 17 Number treated with chemotherapy.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 17 Number treated with chemotherapy

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>26/21242</td>
<td>41/21244</td>
<td>22.8 %</td>
<td>0.63 [0.39, 1.04]</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI) 21242 21244 22.8 % 0.63 [0.39, 1.04]

Total events: 26 (Screening), 41 (No screening)
Heterogeneity: not applicable
Test for overall effect: Z = 1.82 (P = 0.069)

2 Suboptimally randomised trials

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopparberg 1977</td>
<td>226/39051</td>
<td>103/18846</td>
<td>77.2 %</td>
<td>1.06 [0.84, 1.34]</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI) 39051 18846 77.2 % 1.06 [0.84, 1.34]

Total events: 226 (Screening), 103 (No screening)
Heterogeneity: not applicable
Test for overall effect: Z = 0.48 (P = 0.63)

Total (95% CI) 60293 40090 100.0 % 0.96 [0.78, 1.19]

Total events: 252 (Screening), 144 (No screening)
Heterogeneity: Chi² = 3.42, df = 1 (P = 0.062); I² = 71%
Test for overall effect: Z = 0.36 (P = 0.72)
Analysis 1.18. Comparison 1 Screening with mammography versus no screening. Outcome 18 Number treated with hormone therapy.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 18 Number treated with hormone therapy

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening n/N</th>
<th>No screening n/N</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malm 1976</td>
<td>80/21242</td>
<td>99/21244</td>
<td>0.81 [0.60, 1.08]</td>
<td>85.0 %</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>21242 21244</td>
</tr>
<tr>
<td>Total events: 80 (Screening), 99 (No screening)</td>
<td></td>
<td></td>
<td>Test for overall effect: Z = 1.42 (P = 0.16)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>8/39051</td>
<td>13/18846</td>
<td>0.30 [0.12, 0.72]</td>
<td>15.0 %</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>39051 18846</td>
</tr>
<tr>
<td>Total events: 8 (Screening), 13 (No screening)</td>
<td></td>
<td></td>
<td>Test for overall effect: Z = 2.70 (P = 0.0069)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>60293</td>
<td>40090</td>
<td>0.73 [0.55, 0.96]</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Total events: 88 (Screening), 112 (No screening)</td>
<td></td>
<td></td>
<td>Test for overall effect: Z = 2.22 (P = 0.026)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 4.47, df = 1 (P = 0.03); I² = 78%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.1 0.2 0.5 1 2 5 10
Favours screening Favours no screening
Analysis 1.19: Comparison 1 Screening with mammography versus no screening, Outcome 19 Mortality among breast cancer patients in the Two-County study, 7 years follow up.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 19 Mortality among breast cancer patients in the Two-County study, 7 years follow up

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mortality from cancers other than breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>13/674</td>
<td>3/304</td>
<td>54.6 % 1.95 [0.56, 6.81]</td>
<td>54.6 %</td>
<td>1.95 [0.56, 6.81]</td>
</tr>
<tr>
<td>Stergland 1978</td>
<td>12/621</td>
<td>3/464</td>
<td>45.4 % 2.99 [0.85, 10.53]</td>
<td>45.4 %</td>
<td>2.99 [0.85, 10.53]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1295</td>
<td>768</td>
<td>▼</td>
<td>100.0 %</td>
<td>2.42 [1.00, 5.85]</td>
</tr>
<tr>
<td>Total events:</td>
<td>25 (Treatment), 6 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi$^2 = 0.22$, df = 1 ($P = 0.64$); $I^2 = 0.0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.97 ($P = 0.049$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Mortality from causes other than breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>47/674</td>
<td>15/304</td>
<td>48.7 % 1.41 [0.80, 2.49]</td>
<td>48.7 %</td>
<td>1.41 [0.80, 2.49]</td>
</tr>
<tr>
<td>Stergland 1978</td>
<td>34/621</td>
<td>19/464</td>
<td>51.3 % 1.34 [0.77, 2.31]</td>
<td>51.3 %</td>
<td>1.34 [0.77, 2.31]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1295</td>
<td>768</td>
<td>▼</td>
<td>100.0 %</td>
<td>1.37 [0.93, 2.04]</td>
</tr>
<tr>
<td>Total events:</td>
<td>81 (Treatment), 34 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi$^2 = 0.02$, df = 1 ($P = 0.89$); $I^2 = 0.0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.58 ($P = 0.11$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screening for breast cancer with mammography (Review)

Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Analysis 1.20. Comparison 1 Screening with mammography versus no screening, Outcome 20 Results for biased trial.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 20 Results for biased trial

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening n/N</th>
<th>No screening n/N</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Deaths ascribed to breast cancer, 7 years follow up</td>
<td>Edinburgh 1978 68/23226 76/21904</td>
<td></td>
<td>0.84 [0.61, 1.17]</td>
</tr>
<tr>
<td>2 Deaths ascribed to breast cancer, 13 years follow up</td>
<td>Edinburgh 1978 176/28628 187/26015</td>
<td></td>
<td>0.86 [0.70, 1.05]</td>
</tr>
<tr>
<td>3 Deaths ascribed to breast cancer, 7 years follow up, younger women (below 50 years of age)</td>
<td>Edinburgh 1978 13/5913 13/5810</td>
<td></td>
<td>0.98 [0.46, 2.12]</td>
</tr>
<tr>
<td>4 Deaths ascribed to breast cancer, 7 years follow up, elderly women (at least 50 years of age)</td>
<td>Edinburgh 1978 55/17313 63/16094</td>
<td></td>
<td>0.81 [0.57, 1.16]</td>
</tr>
<tr>
<td>5 Deaths ascribed to breast cancer, 13 years follow up, younger women (below 50 years of age)</td>
<td>Edinburgh 1978 47/11479 53/10267</td>
<td></td>
<td>0.79 [0.54, 1.17]</td>
</tr>
<tr>
<td>6 Deaths ascribed to breast cancer, 13 years follow up, elderly women (at least 50 years of age)</td>
<td>Edinburgh 1978 129/17149 134/15748</td>
<td></td>
<td>0.88 [0.69, 1.12]</td>
</tr>
<tr>
<td>7 Overall mortality, 7 years follow up</td>
<td>Edinburgh 1978 1274/23226 1490/21904</td>
<td></td>
<td>0.81 [0.75, 0.87]</td>
</tr>
<tr>
<td>8 Number treated with radiotherapy</td>
<td>Edinburgh 1978 75/23226 63/21904</td>
<td></td>
<td>1.12 [0.80, 1.57]</td>
</tr>
</tbody>
</table>

Screening for breast cancer with mammography (Review)

Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Analysis 1.21. Comparison 1 Screening with mammography versus no screening, Outcome 21 Number of cancers.

Review: Screening for breast cancer with mammography

Comparison: 1 Screening with mammography versus no screening

Outcome: 21 Number of cancers

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed</td>
<td>95% CI</td>
<td>M-H,Fixed</td>
</tr>
<tr>
<td>1 Adequately randomised trials (after 7-9 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>426/25214</td>
<td>327/25216</td>
<td>1.30</td>
<td>[1.13, 1.50]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>460/19711</td>
<td>365/19694</td>
<td>1.26</td>
<td>[1.10, 1.44]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>5882/1088</td>
<td>4472/1195</td>
<td>1.32</td>
<td>[1.17, 1.49]</td>
<td></td>
</tr>
<tr>
<td>UK age trial 1991</td>
<td>482/53890</td>
<td>821/10697</td>
<td>1.17</td>
<td>[1.04, 1.30]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>119903</td>
<td>173076</td>
<td>58.4 %</td>
<td>1.25 [1.18, 1.34]</td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>1956 (Screening), 1960 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>$\chi^2 = 2.65$, df = 3 ($P = 0.45$); $I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>$Z = 7.01$ ($P < 0.00001$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Suboptimally randomised trials (before control group screen)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed</td>
<td>95% CI</td>
<td>M-H,Fixed</td>
</tr>
<tr>
<td>Göteborg 1982a</td>
<td>144/1724</td>
<td>155/142/17</td>
<td>1.13</td>
<td>[0.90, 1.41]</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>428/40318</td>
<td>142/19943</td>
<td>1.49</td>
<td>[1.23, 1.80]</td>
<td></td>
</tr>
<tr>
<td>Two-County 1977</td>
<td>1378/77080</td>
<td>752/55985</td>
<td>1.33</td>
<td>[1.22, 1.45]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>129122</td>
<td>90145</td>
<td>41.6 %</td>
<td>1.33 [1.24, 1.44]</td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>1950 (Screening), 1049 (No screening)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>$\chi^2 = 3.48$, df = 2 ($P = 0.18$); $I^2 = 43%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>$Z = 7.47$ ($P < 0.00001$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 249025 263221 100.0 % 1.29 [1.23, 1.35]

Heterogeneity: $\chi^2 = 7.55$, df = 6 ($P = 0.27$); $I^2 = 21\%$

Test for overall effect: $Z = 10.20$ ($P < 0.00001$)

ADDITIONAL TABLES

Table 1. Examples of varying numbers of women in the Swedish trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Age range</th>
<th>Study group</th>
<th>Control group</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malmö</td>
<td>40-74</td>
<td>21242</td>
<td>21240</td>
<td>Andersson 1980</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>21242</td>
<td>21244</td>
<td>Andersson 1983</td>
</tr>
</tbody>
</table>
Table 1. Examples of varying numbers of women in the Swedish trials
(Continued)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Total</th>
<th>Socialstyrelsen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-74</td>
<td>47389</td>
<td>22658</td>
<td>Socialstyrelsen 1985</td>
</tr>
<tr>
<td>40-74</td>
<td>39051</td>
<td>18846</td>
<td>Täbar 1985</td>
</tr>
<tr>
<td>40-74</td>
<td>38589</td>
<td>18582</td>
<td>Täbar 1989</td>
</tr>
<tr>
<td>40-74</td>
<td>38562</td>
<td>18478</td>
<td>Nyström 1993</td>
</tr>
<tr>
<td>40-74</td>
<td>38589</td>
<td>18582</td>
<td>Täbar 1995</td>
</tr>
<tr>
<td>40-74</td>
<td>38568</td>
<td>18479</td>
<td>Nyström 2000</td>
</tr>
<tr>
<td>40-74</td>
<td>38588</td>
<td>18582</td>
<td>Nixon 2000</td>
</tr>
<tr>
<td>40-74</td>
<td>data not available</td>
<td>data not available</td>
<td>Nyström 2002</td>
</tr>
<tr>
<td>40-49</td>
<td>9625</td>
<td>5053</td>
<td>Täbar 1988</td>
</tr>
<tr>
<td>40-49</td>
<td>data not available</td>
<td>data not available</td>
<td>Nyström 1993a</td>
</tr>
<tr>
<td>40-49</td>
<td>9582</td>
<td>5031</td>
<td>Täbar 1995</td>
</tr>
<tr>
<td>40-49</td>
<td>9650</td>
<td>5009</td>
<td>Nyström 1997</td>
</tr>
<tr>
<td>Östergötland</td>
<td>total</td>
<td>47001</td>
<td>45933</td>
</tr>
<tr>
<td>40-74</td>
<td>39034</td>
<td>37936</td>
<td>Täbar 1985</td>
</tr>
<tr>
<td>40-74</td>
<td>38491</td>
<td>37403</td>
<td>Täbar 1989</td>
</tr>
<tr>
<td>40-74</td>
<td>38405</td>
<td>37145</td>
<td>Nyström 1993</td>
</tr>
<tr>
<td>40-74</td>
<td>38491</td>
<td>37403</td>
<td>Täbar 1995</td>
</tr>
<tr>
<td>40-74</td>
<td>38942</td>
<td>37675</td>
<td>Nyström 2000</td>
</tr>
<tr>
<td>40-74</td>
<td>39105</td>
<td>37858</td>
<td>Nixon 2000</td>
</tr>
<tr>
<td>40-74</td>
<td>38942</td>
<td>37675</td>
<td>Nyström 2002</td>
</tr>
<tr>
<td>40-49</td>
<td>10312</td>
<td>10625</td>
<td>Täbar 1988</td>
</tr>
<tr>
<td>40-49</td>
<td>data not available</td>
<td>data not available</td>
<td>Nyström 1993a</td>
</tr>
<tr>
<td>40-49</td>
<td>10262</td>
<td>10573</td>
<td>Täbar 1995</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>17 November 2010</td>
<td>Amended</td>
<td>Corrected labels for Figure 1.21.</td>
<td></td>
</tr>
</tbody>
</table>
HISTORY

Protocol first published: Issue 1, 2000

Review first published: Issue 4, 2001

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 August 2009</td>
<td>New citation required but conclusions have not changed</td>
<td>new citation = no change to conclusions</td>
</tr>
<tr>
<td>3 March 2009</td>
<td>New search has been performed</td>
<td>Data from a new trial, UK age trial, added.</td>
</tr>
<tr>
<td>12 July 2006</td>
<td>New citation required and conclusions have changed</td>
<td>Substantive amendment</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

PCG wrote the draft protocol and did the searches. Both authors extracted the main data independently for this update and contributed to the review. PCG is guarantor.

DECLARATIONS OF INTEREST

None. We had no a priori opinion on the effect of screening for breast cancer when we were asked by the Danish Institute for Health Technology Assessment, the National Board of Health, in 1999 to review the randomised trials.

SOURCES OF SUPPORT

Internal sources
 - Rigshospitalet, Denmark.

External sources
 - Danish Institute for Health Technology Assessment, Denmark.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

A new outcome was added when we discovered that breast cancer mortality is an unreliable outcome. This was mortality from any cancer.
NOTES
A new trial, the UK age trial, has been added since the 2006 update.

INDEX TERMS

Medical Subject Headings (MeSH)
*Mammography [adverse effects; psychology]; *Mass Screening; Breast Neoplasms [*mortality; *radiography]; Cause of Death; Diagnostic Errors; Randomized Controlled Trials as Topic; Risk

MeSH check words
Adult; Female; Humans; Middle Aged