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MTH5123 Differential Equations

Most of the problems are unseen but are similar to/variations of
those considered in weekly tutorials/lectures/mock exam paper.
The students are supposed to make an active use of the provided Formula
Sheet.

Solution to the Exam Problems 2014

1. a) Find a function f(u) such that the differential equation

f(x+ y) + lnx+
(
ex+y + y2

) dy
dx

= 0

is exact (5 points)

Solution: Denoting

P (x, y) = f(x+ y) + lnx, Q(x, y) = ex+y + y2

we have ∂P
∂y = f ′(x + y) whereas ∂Q

∂x = ex+y. The equation is

exact only if ∂P
∂y = ∂Q

∂x which gives f ′(x + y) = ex+y. In turn
this implies f(u) = eu + const, and we can take a particular case
const = 0.

b) For the chosen f(u) write down the corresponding solution in implicit
form. (11 points)

Solution: For such a choice of f(x + y) = ex+y the general
solution can be looked for in implicit form F (x, y) = C where

F (x, y) =

∫
P (x, y) dx =

∫ (
ex+y + lnx

)
dx = ex+y+x ln |x|−x+g(y)

where g(y) is to be determined from the condition Q = ∂F
∂y =

ex+y + g′(y). We conclude that g′(y) = y2, hence g(y) = y3

3 +
const, and the general solution is given in implicit form as

ex+y + x ln |x| − x+
y3

3
= C

c) almost identical to the problem considered in a weekly tutorial
Consider the initial value problem

dy

dx
= f(x, y), f(x, y) =

√
y2 + 9, y(1) = 0
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Show that the Picard-Lindelöf Theorem guarantees the uniqueness
and existence of the solution to the above problem in a rectangular
domain D = (|x− a| ≤ A, |y − b| ≤ B) in the xy plane, and spec-
ify the parameters a and b. Find the possible range of values of the
height B of the domain D given that the width A of the domain
satisfies A < 1/2. (9 points)

Solution: the right-hand side f(x, y) =
√

9 + y2 is continuous

everywhere, and its derivative ∂f
∂y satisfies

∣∣∣∂f∂y ∣∣∣ = |y|/
√

9 + y2 <

1, so is bounded. The initial conditions imply a = 1 and b =
y(1) = 0, hence in the rectangular domainD = (|x− 1| < A, |y| < B)
the solution to ODE exists and is unique, provided A < B/M ,
with M = maxD

√
y2 + 9. The function f(x, y) =

√
9 + y2 in

the right-hand side of the ODE obviously grows with |y| so for
a given B its maximum M is achieved for |y| = B. We then
have M =

√
9 +B2 which implies that the width A should sat-

isfy A < B/M = B/
√

9 +B2. The maximal value of the width
is A = B/

√
9 +B2 and requiring A < 1/2 we have

B/
√

9 +B2 < 1/2, ⇒ (2B)2 < 9 +B2, ⇒ B2 < 3

Thus, for B <
√

3 the width of the region where the uniqueness
and existence is guaranteed satisfies A < 1/2.
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2. a) Find the general solution of the homogeneous ODE y′′ + 9y = 0
(5 points)

Solution: The characteristic equation is λ2 + 9 = 0 which has
two complex conjugate roots: λ1 = 3i and λ2 = −3i. The general
solution to the homogeneous equation can be written in the form
yh(x) = c1 cos 3x+ c2 sin 3x.

b) Find the general solution of the non-homogeneous ODE

y′′ + 9y = sin(2x)

. (11 points)

Solution: Since the function sin 2x is not a solution to the homo-
geneous equation, we may use the ”educated guess” method and
look for the particular solution of the nonhomogeneous equation
in the form yp(x) = A sin 2x+ B cos 2x so that y′p = 2A cos 2x−
2B sin 2x and y′′p = −4yp. Substituting this back to the non-
homogeneous equation gives in the left-hand side: (A sin 2x +
B cos 2x)(−4+9) = 5A sin 2x+5B cos 2x. To match to the right-
hand side we should choose A = 1/5, B = 0 so that yp(x) =
1
5 sin 2x. Finally, the general solution to the nonhomogeneous
equation is given by the sum:

y(x) = c1 sin 3x+ c2 cos 3x+
1

5
sin 2x

c) c)+d) are identical to a problem considered in one of weekly tu-
torials
Write down the general solution to the first order homogeneous linear
ODE

y′ = tan (x) y

(5 points)

Solution. The homogeneous ODE y′ = tan(x)y is separable
and following the standard procedure we introduce in the left-
hand side H(y) =

∫ dy
y = ln |y|, hence solving H(y) = u we find

y = ±eu = H−1(u). In the right-hand side we have∫
tanx dx = − ln | cosx|+ C
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so that the general solution to the homogeneous equation is given
by

yh = H−1 (− ln | cosx|+ C) = ±eC 1

| cosx|
= D

1

cosx

where we denoted D = ±eC the constant of arbitrary sign.

d) Solve the initial value problem for the first order linear non-homogeneous
ODE

y′ = tan (x) y + 1, y(0) = 2 .

(4 points)

Solution. The standard methods used in the lectures was the
variation of parameters, but some students prefer the integrating
factor method. They will be given full marks if arrive to the cor-
rect solution.
According to the variation of parameters method we look for a
solution of the non-homogeneous ODE in the form:

y =
D(x)

cosx
, ⇒ y′ =

D′(x)

cosx
+D(x)

sinx

cos2 x

Substituting this back to the equation y′ = sin (x)
cos (x) y + 1 we have

D′(x)

cosx
+D(x)

sinx

cos2 x
=
D(x)

cosx
tanx+ 1

which implies

D′(x) = cosx, ⇒ D(x) = sinx+ C

which gives for the general solution of the non-homogeneous ODE

yg(x) =
1

cosx
(sinx+ C)

As y(0) = C = 2, we finally find the solution to the initial value
problem

yg(x) =
1

cosx
(sinx+ 2) = tanx+

2

cosx
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The problem is a variation of one considered in weekly tutorials

3. Write down the solution to the following Boundary Value Problem (BVP)
for the second order nonhomogeneous differential equation

d2y

dx2
= f(x), y(0) = 0, y′(1) = 0

by using the Green’s function method along the following lines:

a) Formulate the corresponding left-end initial value problem and find
its solution yL(x). (8 points)

Solution. The general solution yg(x) to the linear homogeneous
equation y′′ = 0 is easily found to be given by

yg(x) = c1x+ c2

The left-end boundary condition y(0) = 0 is imposed at x1 = 0. By
comparing it to the standard form αy′(x1)+βy(x1) = 0 we conclude
that α = 0, β = 1. Then the left-end initial value problem for the
function yL(x) is formulated as

yL(x1) = α, y′L(x1) = −β, ⇒ yL(0) = 0, y′L(0) = −1

so that c2 = 0, c1 = −1 which immediately gives

yL(x) = −x

b) Formulate the corresponding right-end initial value problem and find
its solution yR(x). (7 points)

Solution. Obviously, x2 = 1 and by comparing the right-end
boundary condition y′(1) = 0 to the standard form γy′(x2)+δy(x2) =
0 we conclude that γ = 1, δ = 0. Then the right-end initial value
problem for the function yR(x) is formulated as

yR(x2) = γ, y′R(x1) = −δ, ⇒ yR(1) = 1, y′R(1) = 0

which now gives c1 + c2 = 1, c1 = 0 so that

yR(x) = 1
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c)) Use yL(x), yR(x) for constructing the Green’s function G(x, s) .
(6 points)

Solution. Using yL(x) and yR(x) we calculate the Wronskian

W (s) = yL(s)y′R(s)− yR(s)y′L(s) = 0 + 1 = 1

so that
A(s) = 1, B(s) = −s

Finally the Green’s function is constructed as

G(x, s) =

{
−A(s)x, 0 ≤ x ≤ s
B(s), s ≤ x ≤ 1

=

{
−x, 0 ≤ x ≤ s
−s, s ≤ x ≤ 1

d) Write down the solution to the BVP. in terms of G(x, s) and f(x)
and use it to find the explicit form of the solution for f(x) = x2.
(4 points) Solution. The solution to the boundary value problem
is given by

y(x) =

∫ 1

0
G(x, s) f(s) ds =

∫ x

0
G(x, s) f(s) ds+

∫ 1

x
G(x, s) f(s) ds

= −
∫ x

0
s f(s) ds− x

∫ 1

x
f(s) ds

substituting here f(x) = x2 gives

y(x) = −
∫ x

0
s3 ds− x

∫ 1

x
s2 ds = −x

4

4
− x1

3
(1− x3) = −x

3
+
x4

12
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4. Consider a system of two nonlinear first-order ODE:

ẋ = −x− 3y − 3x3, ẏ =
4

3
x− y − 1

3
x3 (1)

a) Write down in the matrix form the system obtained by linearization
of the above equations around the point x = y = 0 and find the
corresponding eigenvalues and eigenvectors. (8 points)

Solution. Discarding nonlinear terms we arrive at

ẋ = −x− 3y, ẏ =
4

3
x− y,

(
ẋ
ẏ

)
=

(
−1 −3
4
3 −1

)(
x
y

)

The characteristic equation is given by (−1 − λ)2 + 4 = 0 with
two complex-conjugate roots λ1,2 = −1 ± 2i. The eigenvector
corresponding to λ1 = −1 + 2i can be found from(

−1 −3
4
3 −1

)(
p1
q1

)
= (−1 + 2i)

(
p1
q1

)
, ⇒ q1 = −2

3
ip1

so that the eigenvector can be chosen as u1 =

(
1
−2

3 i

)
. As

second eigenvector u2 must be the complex conjugate of u1 we

can immediately write down u2 =

(
1
2
3 i

)
b) Write down general solution of the linear system. Discuss the stabil-

ity of zero solution of such a linear system and determine the value
x(t→∞). (4 points)

Solution. As the real part of the eigenvalues is negative the sys-
tem is asymptoticallly stable which implies x(t) → 0 as t → ∞.
This can be also inferred directly from the general solution:(

x
y

)
= C1e

(−1+2i)t

(
1
−2

3 i

)
+ C2e

(−1−2i)t
(

1
2
3 i

)

c) Find the solution of the linear system corresponding to the initial
conditions x(0) = 2, y(0) = 0. Determine the type of equilibrium for
the system and describe in words the shape of trajectory in the phase
plane corresponding to the specified initial conditions. Determine the
tangent vector to the trajectory at t = 0. (8 points)
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Solution. From the general solution we have

x(t) = C1e
(−1+2i)t + C2e

(−1−2i)t, ⇒ x(0) = C1 + C2 = 2

y(t) = −2

3
i
(
C1e

(−1+2i)t − C2e
(−1−2i)t

)
, ⇒ y(0) = −2

3
i(C1−C2) = 0

which gives C1 = C2 = 1. Hence the trajectory is given by
coordinates

x(t) = e(−1+2i)t + e(−1−2i)t = 2e−t cos 2t

y(t) = −2

3
i
(
e(−1+2i)t − e(−1−2i)t

)
=

4

3
e−t sin 2t

which has the shape of a spiral rotating around the origin and
approaching it asymptotically for t → ∞. The type of equi-
librium is a stable focus. The components of the initial tan-
gent vector determining the direction of rotation are given by
ẋ(0) = −2, ẏ(0) = 8/3.

d) Demonstrate how to use the function V (x, y) = 4
3x

2 + 3y2 to inves-
tigate the stability of the full non-linear system (??). (5 points)

Solution. V (x, y) > 0 for x 6= 0, y 6= 0 and V (0, 0) = 0. We also
have the orbital derivative:

DfV =
∂V

∂x
ẋ+

∂V

∂y
ẏ

=
8

3
x(−x−3y−3x3)+6y

(
4

3
x− y − 1

3
y3
)

= −8

3
x2−6y2−8x4−2y4 < 0

for any (x, y) 6= (0, 0). Therefore V (x, y) is a valid Lyapunov
function ensuring the stability of the solution of nonlinear equa-
tion.


