Chapter 7 Short Summary

* Multi-statements and terminators (:, ;)
-> Group statements by putting them all in the same execution group and terminate each statement with either a semicolon or a colon.
A colon suppresses output display whereas a semicolon does not. The last semicolon or colon is optional. A colon at the end of a control structure prevents display of the values of all expressions evaluated inside the control statement.

e.g.
> [image:]
[image:]
[image:] 	(1.1.1)

Only the last value displayed can be accessed via the output label (1.1.1).

-> To start a new line without executing, press Shift+Enter.
e.g.
>	a;
b:
c
[image:]
[image:]

(Execute the group by pressing Enter as usual.)

* Control Structures
Control structures automate repeated calculations. A statement sequence inside a control structure is called the body of the control structure.
All input associated with a loop must be in the same execution group. This includes any initialization before the loop and any display of results after the loop.

* Emergency Stops
-> Click [image:], to stop Maple.

(Remark: This does not always work so do not rely on it. Avoid infinite loops by including appropriate stop mechanisms in repetition statements. Always save your work before executing any repetition statement.)

-> You may be able to close Maple completely by closing the Maple window, which sometimes only interrupts Maple without actually closing it, but this is certainly not reliable.

-> Use Task Manager to close Maple only if nothing else works. Terminate any process with "maple" or "mserver" in its name.

* print()
print() displays the value of its argument sequence, as a sequence, on the current output device.

It is generally necessary to put backward or double quotes around any text to be displayed by print().
Backward quotes are not displayed (they make the text into a symbol). Double quotes are displayed (they make the text into a string).

(Remark: Do not use forward quotes unless you want to prevent evaluation.)

(Remark: print() is useful for displaying specific information from inside control structures.)

* Comments
Any text following a # symbol is a comment and is ignored by Maple.

* Parallel Assignment
Make several assignments in parallel by using an expression sequence with the same number of elements on both sides of the assignment operator.
e.g. > [image:]
[image:]

e.g. Useful in structured data types:
> [image:]
[image:]
> [image:]
[image:]

e.g. Useful to exchange values of 2 variables:
> [image:]
[image:]
> [image:]
[image:]

(Remark: Parallel assignment is not available in conventional programming languages.)

* do …end do

do…end do is a loop. (When Maple reaches end do it goes back to do and executes the statement sequence again and again until something stops it.)

[image:]

There must be a semicolon (or colon) after each statement except the last inside the [image:] structure.

* for… from… by… to… do… end do

-> to ...do…end do
To repeat a sequence of statements n times, put “to n” in front of the “do”. This increases the counter from 1 to n, as the loop repeats.
e.g.
> [image:]
[image:]
[image:]
[image:]
[image:]
[image:]

(Remark: A common way to stop a loop is to specify a counter as above. You can provide a high but finite upper limit, to avoid any possibility of an infinite loop. This is called defensive programming.)

-> for… do… end do
You can use the value of the loop counter, if you give the counter a name by including a for clause, like this:
> [image:]
[image:]
[image:]
[image:]
[image:]
[image:]

-> from… by… do… end do
You can also make the loop counter start from any value [image:] by including [image:] and count in steps of [image:] by including [image:].
e.g.,
> [image:]
[image:]
[image:]
[image:]
[image:]
[image:]

(Remark: You can count down by using a negative step. Remember the [image:] value must be less than the [image:] value if counting down.)

* for… in… do… end do/ for…∈… do… end do
-> The [image:] control structure iterates over each element of a data structure (such as a set or list) in turn.

e.g.
Here we find which of the sets S, in the set P, contain the element 5:
> [image:]
[image:]
[image:]
[image:]

(The symbol[image:]can be used instead of the keyword [image:])

[bookmark: _GoBack]
* Aside: Generating sequences, sums and products, with a loop
-> To construct and display a sequence using a loop:
Choose a variable, such as [image:], to store the sequence and initialize it to the empty sequence, which can be input as [image:].
Then, in a loop, compute the value of the next element in the sequence, and append it to the sequence stored in [image:] by using the comma operator.

e.g. The following constructs a sequence of five elements and then displays the result.
> [image:]
[image:]

e.g. The following computes and stores a sequence of the first ten factorials in the variable S.
> [image:]
[image:]

(Remark: A set or list is generated by enclosing a sequence in appropriate brackets, i.e. [image:] or [image:].)

-> Similarly, you can construct sums and products using loops:
> [image:]
[image:]
> [image:]
[image:]

* if… then
[image:]
where [image:] must be an expression that Maple can evaluate to [image:] or [image:]. The else is used to do something else if the first statement does not meet the condition (is false).

The general [image:] structure looks like this:
> [image:]
Only one statement sequence is executed. Maple evaluates the conditions in the order they are written and if one evaluates to [image:] then the [image:] following it (up to the next [image:] or [image:]) are executed; otherwise, any [image:] following [image:] (up to the next [image:]) are executed. Then execution continues as normal after the [image:].
(There can be any number of "[image:]" clauses and the final "[image:]" clause is optional.)

* next and break
-> next skips back to the start of the loop that contains it.
e.g.
The Mersenne numbers [image:] that are not prime, where [image:] is any of the first 10 primes:
> [image:]
[image:]
[image:]
[image:]

(Remark: next can be an elegant alternative to putting a lot of statements inside an [image:] statement).

-> break terminates the loop that contains it.
e.g.
A Fermat number is a number of the form [image:]where [image:] is a non-negative integer, and Fermat incorrectly conjectured that such numbers are prime for all [image:] The following loop displays Fermat numbers until it finds the smallest Fermat number that is not prime:
> [image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

* while
It is possible to allow a loop to run only while some condition remains true (or equivalently stop a loop when some condition becomes false).
(A [image:] clause can be used with any [image:] loop, with or without any other control clauses.)

e.g. This computes and displays the Fermat numbers until it finds the smallest non-prime Fermat number.
> [image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

(Remarks: It is often necessary, as above, to provide some initialization solely to ensure that the [image:] condition is [image:] for the first iteration; otherwise, the loop would never execute at all. The ‘to 100’ bit above, is a safety measure to prevent an infinite loop.)

(Remark: Using while is sometimes better than using break.)

* Accessing data structures using indexing
You can access the elements of any list-like data structure (including arrays, vectors, matrices, etc.) using indexing, by subscripting. (See Chapter 3 for ways to subscript).

The index of the first element of a data structure in Maple is 1 (rather than 0).
The last element can be accessed using the index [image:] and more generally negative indices count backwards from the last element. The last element can also be accessed using nops(), (since the index is the same as the number of elements in the data-structure).

e.g.
> [image:]
[image:]
e.g.
> [image:]
[image:]
> [image:]
[image:]
e.g. A succinct way to reverse the list L:
> [image:]
[image:]

If an unassigned name is indexed then the indexed name remains symbolic and is itself a name, e.g.
> [image:]
[image:]

(Remark: Indexing in Maple is sophisticated, see help for more details.)

* Aside: Multi-step Recursive Sequences
An [image:]-step recursive sequence is a sequence of terms [image:] such that [image:], where the values of [image:] are specified (as initial conditions). To compute the values of the elements of an [image:]-step recursive sequence we need to use at least [image:] variables: [image:] variables (e.g. [image:]) to store the values of the last [image:] elements and one variable (e.g. [image:]) to store the next element, (plus a variable to store the whole sequence if required, plus any variables required to compute the next element). The general loop structure looks like:
> [image:]
e.g. The Fibonacci sequence is a 2-step recursive sequence.

image5.wmf

image95.wmf

image96.wmf

image97.wmf

image98.wmf

image99.wmf

image100.wmf

image101.wmf

image102.wmf

image6.png

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image15.wmf

image16.png
File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help

L2ESE ¥R 5

[—

fla) fla,b)
S=a—y
(a,b) »z

-x x<a

/(Y)L:a ‘ x x>a

PRI

imk =k

jro

TP R MIOPe ¢ BRK @ [B [seaciornen, ks,
Math Drawing Pl Animation Hide
(@& > (s D@ BIU

Y Repeating, deciding and indexing

This week, we will start to write short computer programs, which are often called "code" because they encode instructions or recipes that are officially called "algorithms" in mathematics and computing.

b Statements and terminators

Y Repeating statements: do
We often want to make the same or similar calculations with different data, and programming languages provide so-called control structures to automate this. They are the heart of computer programs. In Maple, the way to repeat a sequence of
statements is to use a control structure called do, which looks like this:
> do
first statement;
second statement;

last statement
end do:

Itis customary, but not obligatory, to set out a sequence of repeated statements as above, where each statement is indented or preceded by a fixed amount of white space. | recommend 3 space characters. There must be a semicolon (or colon)
after each statement except the last inside the do structure. A colon at the end of a control structure prevents display of the values of all expressions evaluated inside the control statement. It is often helpful to omit the colon initially and then add it
when everything is working. Unless all the statements are very short it is best to put all or most of them on separate input ines. Remember that the way to break a line in Maple is to press Shift+Enter; do not press Enter alone until you are
ready to execute the complete control structure!

The way this control structure works is that when Maple reaches end do it goes back to do and executes the statement sequence again and again until something stops it. The key to writing successful repetitions is stopping them correctly! A
repetition control structure is often called a loop and one that repeats forever is called an infinite loop, which is something to avoid. Always save your work before executing any repetition statement, in case you can't stop it!

b Emergency stops 0

P Repeating a specified number of times: to...do

» Updating variables in a loop

b Using the loop counter: for...from...by...to...do

P Generating one-step recursive sequences

b Using a loop to generate a sequence, sum or product
b Parallel assignment

P Generating multi-step recursive sequences

P Deciding:

b Interrupting loops: next and break

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.wmf

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.wmf

image32.wmf

image33.wmf

image34.wmf

image35.wmf

image36.wmf

image37.wmf

image38.wmf

image39.wmf

image40.wmf

image41.wmf

image42.wmf

image43.wmf

image44.wmf

image45.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf

image50.wmf

image51.wmf

image52.wmf

image53.wmf

image54.wmf

image55.png
File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help

D2ESE YBEBR 5 TP X @ MI1IOHES & BKK @ [F B |scachiohd s o

PR K I rosdback Exercies 7.0 © K
limp Ly Ly Math Drawing Plot Animation e
= dx a2
[> (s D@y BIU ’
first statement ; ~
second statement;
last statement
L endif
where condition must be an expression that Maple can evaluate to true or false (i.e. an expression that could be the single argument to the function is or evalb, but if replaces the call of is or evab).
Anif structure s really only useful within some other structure, such as a loop (or a procedure, as we will see later). For example, the following loop prints the values of the prime numbers up to 10;
> forito 10do
if isprime () then
print(i)
endif
enddo
2
3
5
7 (.1L1)
To execute a different statement sequence when the condition is false you include an else clause after the first statement sequence, like this:
> if condition then
statements
else
statements
L endif
where statements represents an arbitrary sequence of statements, separated by semicolons (or colons). For example, the following loop prints the values of both the prime and non-prime positive integers up to 10 with appropriate labels:
> forito 10do
if isprime (i) then
Teijlwo print(i, ‘is prime”)
SO [q4NU else
print(i, is non-prime")
=>32=<< endif
-~ = enddo
L fa =~ = 1,15 nonprime
t=%ec&c 2, is prime
N@g3IV-A 3, is prime
VY=CRN Hnorine
. is prime
& =
QZRJ=I 6, is non-prime
= x /£ 7.is prime
Foos -« v 8, is non-prime
9, is non-prime
10, is non-prime. 112)
The general if structure looks like this:
> if condition then
ctatamante v
vl < >

\Documents\Waths Year 1\Mathematical Computing Memory: 38.57M Time: 0.405 Text Mode

image56.wmf

image57.wmf

image58.wmf

image59.wmf

image60.wmf

image61.wmf

image62.wmf

image63.wmf

image64.wmf

image65.wmf

image66.wmf

image67.wmf

image68.wmf

image69.wmf

image70.wmf

image71.wmf

image72.wmf

image73.wmf

image74.wmf

image3.wmf

image75.wmf

image76.wmf

image77.wmf

image78.wmf

image79.wmf

image80.wmf

image81.wmf

image82.wmf

image83.wmf

image84.wmf

image4.wmf

image85.wmf

image86.wmf

image87.wmf

image88.wmf

image89.wmf

image90.wmf

image91.wmf

image92.wmf

image93.wmf

image94.wmf

